1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
# Turlach -- Running median library.
#
# The algorithm is that described by Haerdle und Steiger (1995) and the
# implementation is after Turlach. The starting point was the GNU General
# Pubic Licensed code from the R Foundation (see copyright heritage below).
# Besides the language recoding the structure has been significantly changed.
#
# Copyright (C) 1995 Berwin A. Turlach <berwin@alphasun.anu.edu.au>
# Copyright (C) 2000-2 Martin Maechler <maechler@stat.math.ethz.ch>
# Copyright (C) 2003 The R Foundation
include <mach.h>
define RMT_OFFSET 4 # Offset to data
define RMT_LEN (RMT_OFFSET+5*$1+3) # Structure length
define RMT_BOX Memi[$1] # Running box size
define RMT_DATA Memi[$1+1] # Sorted data (ptr)
define RMT_IN Memi[$1+2] # Mapping to input (ptr)
define RMT_OUT Memi[$1+3] # Mapping to output (ptr)
define DATA Memr[RMT_DATA($1)+$2]
define IN Mems[RMT_IN($1)+$2]
define OUT Mems[RMT_OUT($1)+$2]
# RMTURLACH -- Compute running median value using the Turlach algorithm.
real procedure rmturlach (rm, index, data)
pointer rm #I Method pointer
int index #I Index of new data
real data #I Input data value
short nrnew, box, outnext, out, leaf, one
data one/1/
begin
nrnew = index - 1
box = RMT_BOX(rm)
outnext = mod (nrnew, box)
out = OUT(rm,outnext)
DATA(rm,out) = data
leaf = out - box
if (out > box) {
if (data >= DATA(rm,box))
call rm_uoui (leaf, box, DATA(rm,1), OUT(rm,1), IN(rm,1))
else
call rm_uodi (leaf, box, nrnew, outnext, data,
DATA(rm,1), OUT(rm,1), IN(rm,1))
} else if (out < box) {
if (data < DATA(rm,box))
call rm_dodi (leaf, box, DATA(rm,1), OUT(rm,1), IN(rm,1))
else
call rm_doui (leaf, box, nrnew, outnext, data,
DATA(rm,1), OUT(rm,1), IN(rm,1))
} else if (DATA(rm,box) > DATA(rm,box+1)) {
call rm_swap (box, box+one, DATA(rm,1), OUT(rm,1), IN(rm,1));
call rm_uptoleaf (one, box, DATA(rm,1), OUT(rm,1), IN(rm,1));
} else if (DATA(rm,box) < DATA(rm,box-1)) {
call rm_swap (box, box-one, DATA(rm,1), OUT(rm,1), IN(rm,1));
call rm_downtoleaf (-one, box, DATA(rm,1), OUT(rm,1), IN(rm,1));
}
return (DATA(rm,box))
end
# RMT_OPEN -- Open Turlach running median algorithm.
pointer procedure rmt_open (box, data)
int box #I Running median box
real data #I Initial data value
pointer rm #R Method pointer
short i, halfbox
#short i, j, k, halfbox, one
#data one/1/
begin
call malloc (rm, RMT_LEN(box), TY_STRUCT)
RMT_BOX(rm) = box
RMT_DATA(rm) = rm + RMT_OFFSET
RMT_IN(rm) = P2S(RMT_DATA(rm) + 2 * box + 1)
RMT_OUT(rm) = RMT_IN(rm) + 2 * box + 1
halfbox = (box - 1) / 2
do i = 1+halfbox, box+halfbox {
DATA(rm,i) = data
IN(rm,i) = i-halfbox-1
OUT(rm,i-halfbox-1) = i
}
do i = 0, halfbox {
DATA(rm,i) = -MAX_REAL
DATA(rm,i+box+halfbox+1) = MAX_REAL
}
return (rm)
end
# RMT_CLOSE -- Close Turlach running median algorithm.
procedure rmt_close (rm)
pointer rm #I Method pointer
begin
call mfree (rm, TY_STRUCT)
end
# RMT_DUMP -- Dump data structure.
procedure rmt_dump (rm, unsorted, sorted, in, out)
pointer rm #I Method pointer
bool unsorted #I Dump data in unsorted order?
bool sorted #I Dump data in sorted order?
bool in #I Dump in list?
bool out #I Dump out list?
int i, box, halfbox
begin
box = RMT_BOX(rm)
halfbox = box / 2
if (unsorted) {
do i = 1+halfbox, halfbox+box {
call eprintf (" %3.0f")
call pargr (DATA(rm,OUT(rm,i-halfbox-1)))
}
call eprintf ("\n")
}
if (sorted) {
#do i = 0, 2*box {
do i = 1+halfbox, halfbox+box {
call eprintf (" %3.0f")
call pargr (DATA(rm,i))
}
call eprintf ("\n")
}
if (in) {
#do i = 0, 2*box {
do i = 1+halfbox, halfbox+box {
call eprintf (" %3d")
call pargs (IN(rm,i))
}
call eprintf ("\n")
}
if (out) {
do i = 0, box-1 {
call eprintf (" %3d")
call pargs (OUT(rm,i))
}
call eprintf ("\n")
}
end
# RM_SWAP -- Swap positions `l' and `r'.
procedure rm_swap (l, r, window, outlist, nrlist)
short l #I Index to swap
short r #I Index to swap
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short nl, nr
real w
begin
w = window[l]; window[l] = window[r]; window[r] = w
nl = nrlist[l]; nr = nrlist[r]; nrlist[l] = nr; nrlist[r] = nl
outlist[nl] = r; outlist[nr] = l
end
# RM_SIFTUP -- Used only in the initial sorting.
procedure rm_siftup (l, r, window, outlist, nrlist)
short l #I Left index
short r #I Right index
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short i, j, nrold
real w
begin
i = l
j = 2 * i
w = window[i]
nrold = nrlist[i]
while (j <= r) {
if (j < r) {
if (window[j] < window[j+1])
j = j + 1
}
if (w >= window[j])
break
window[i] = window[j]
outlist[nrlist[j]] = i
nrlist[i] = nrlist[j]
i = j
j = 2 * i
}
window[i] = w
outlist[nrold] = i
nrlist[i] = nrold
end
# RM_UOUI - Upper Out Upper In
procedure rm_uoui (leaf, box, window, outlist, nrlist)
short leaf #I Leaf
short box #I Box size
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short i, j, k
begin
call rm_uptoleaf (leaf, box, window, outlist, nrlist)
i = leaf
j = i + box
k = i / 2 + box
while (window[j] < window[k]) {
call rm_swap (j, k, window, outlist, nrlist)
i = (k - box)
j = i + box
k = i / 2 + box
}
end
# RM_DODI - Down Out Down In
procedure rm_dodi (leaf, box, window, outlist, nrlist)
short leaf #I Leaf
short box #I Box size
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short i, j, k
begin
call rm_downtoleaf (leaf, box, window, outlist, nrlist)
i = leaf
j = i + box
k = i / 2 + box
while (window[j] > window[k]) {
call rm_swap (j, k, window, outlist, nrlist)
i = (k - box)
j = i + box
k = i / 2 + box
}
end
# RM_UODI -- Upper Out Down In
procedure rm_uodi (leaf, box, nrnew, outnext, in, window, outlist, nrlist)
short leaf #I Leaf
short box #I Box size
short nrnew #I nrnew
short outnext #I outnext
real in #I Input value
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short one
data one/1/
begin
call rm_toroot (leaf, box, nrnew, outnext, in, window, outlist,
nrlist)
if (window[box] < window[box-1]) {
call rm_swap (box, box-one, window, outlist, nrlist)
call rm_downtoleaf (-one, box, window, outlist, nrlist)
}
end
# RM_DOUI -- Down Out Upper In
procedure rm_doui (leaf, box, nrnew, outnext, in, window, outlist, nrlist)
short leaf #I Leaf
short box #I Box size
short nrnew #I nrnew
short outnext #I outnext
real in #I Input value
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short one
data one/1/
begin
call rm_toroot (leaf, box, nrnew, outnext, in, window, outlist,
nrlist)
if (window[box] > window[box+1]) {
call rm_swap (box, box+one, window, outlist, nrlist)
call rm_uptoleaf (one, box, window, outlist, nrlist)
}
end
# RM_TOROOT
procedure rm_toroot (leaf, box, nrnew, outnext, in, window, outlist, nrlist)
short leaf #I Leaf
short box #I Box size
short nrnew #I nrnew
short outnext #I outnext
real in #I Input value
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short i, j, k
begin
i = leaf
repeat {
j = i + box
k = i / 2 + box
window[j] = window[k]
outlist[nrlist[k]] = j
nrlist[j] = nrlist[k]
i = k - box
} until (i == 0)
window[box] = in
outlist[outnext] = box
nrlist[box] = outnext
end
# RM_DOWNTOLEAF
procedure rm_downtoleaf (leaf, box, window, outlist, nrlist)
short leaf #I Leaf
short box #I Box size
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short i, j, childl, childr
begin
i = leaf
repeat {
j = i + box
childl = 2 * i + box
childr = childl - 1
if (window[childl] < window[childr])
childl = childr
if (window[j] >= window[childl])
break
call rm_swap (j, childl, window, outlist, nrlist)
i = childl - box
}
end
# RM_UPTOLEAF
procedure rm_uptoleaf (leaf, box, window, outlist, nrlist)
short leaf #I Leaf
short box #I Box size
real window[ARB] #U Work array
short outlist[ARB] #U Work array
short nrlist[ARB] #U Work array
short i, j, childl, childr
begin
i = leaf
repeat {
j = i + box
childl = 2 * i + box
childr = childl + 1
if (window[childl] > window[childr])
childl = childr
if (window[j] <= window[childl])
break
call rm_swap (j, childl, window, outlist, nrlist)
i = childl - box
}
end
|