aboutsummaryrefslogtreecommitdiff
path: root/pkg/xtools/xtstat.x
blob: 1979fddf4cec64c69c80f864ce6d8b9a4a415b2d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# XT_STAT -- Compute statistics from a sample.
#
# The sample array will be sorted.

define	NMIN	10	# Minimum number of pixels for mode calculation
define	ZSTEP	0.01	# Step size for search for mode
define	ZBIN	0.1	# Bin size for mode.


procedure xt_stats (sample, nsample, frac, mean, sigma, median, mode)

short	sample[nsample]			#I Sample
int	nsample				#I Number of sample pixels
real	frac				#I Fraction of data to use
real	mean, sigma, median, mode	#O Statistics

int	i, j, k, nmax
real	z1, z2, zstep, zbin
bool	fp_equalr()

begin
	# Sort the sample.
	call asrts (sample, sample, nsample)

	# Set fraction to use.
	i = max (1, 1 + nsample * (1. - frac) / 2.)
	j = min (nsample, 1 + nsample * (1. + frac) / 2.)
	z1 = sample[i]
	z2 = sample[j]

	# Compute the mean and sigma.
	call aavgs (sample[i], j-i+1, mean, sigma)

	# Compute the median.
	median =  sample[nsample/2]

	z1 = median - 2 * sigma
	if (z1 < sample[1])
	    i = 1
	else {
	    k = i
	    do i = k, 2, -1 {
		if (sample[i] <= z1)
		    break
	    }
	}
	z1 = sample[i]

	z2 = median + 2 * sigma
	if (z2 > sample[nsample])
	    i = nsample
	else {
	    k = j
	    do j = k, nsample-1 {
		if (sample[j] >= z1)
		    break
	    }
	}
	z2 = sample[j]

	# Compute the mode.

	if (nsample < NMIN)
	    mode = median

	else if (fp_equalr (z1, z2))
	    mode = z1

	else {
	    zstep = ZSTEP * sigma
	    zbin = ZBIN * sigma
	    zstep = max (1., zstep)
	    zbin = max (1., zbin)

	    z1 = z1 - zstep
	    k = i
	    nmax = 0
	    repeat {
		z1 = z1 + zstep
		z2 = z1 + zbin
		for (; i < j && sample[i] < z1; i=i+1)
		    ;
		for (; k < j && sample[k] < z2; k=k+1)
		    ;
		if (k - i > nmax) {
		    nmax = k - i
		    mode = sample[(i+k)/2]
		}
	    } until (k >= j)
	}
end

procedure xt_stati (sample, nsample, frac, mean, sigma, median, mode)

int	sample[nsample]			#I Sample
int	nsample				#I Number of sample pixels
real	frac				#I Fraction of data to use
real	mean, sigma, median, mode	#O Statistics

int	i, j, k, nmax
real	z1, z2, zstep, zbin
bool	fp_equalr()

begin
	# Sort the sample.
	call asrti (sample, sample, nsample)

	# Set fraction to use.
	i = max (1, 1 + nsample * (1. - frac) / 2.)
	j = min (nsample, 1 + nsample * (1. + frac) / 2.)
	z1 = sample[i]
	z2 = sample[j]

	# Compute the mean and sigma.
	call aavgi (sample[i], j-i+1, mean, sigma)

	# Compute the median.
	median =  sample[nsample/2]

	z1 = median - 2 * sigma
	if (z1 < sample[1])
	    i = 1
	else {
	    k = i
	    do i = k, 2, -1 {
		if (sample[i] <= z1)
		    break
	    }
	}
	z1 = sample[i]

	z2 = median + 2 * sigma
	if (z2 > sample[nsample])
	    i = nsample
	else {
	    k = j
	    do j = k, nsample-1 {
		if (sample[j] >= z1)
		    break
	    }
	}
	z2 = sample[j]

	# Compute the mode.

	if (nsample < NMIN)
	    mode = median

	else if (fp_equalr (z1, z2))
	    mode = z1

	else {
	    zstep = ZSTEP * sigma
	    zbin = ZBIN * sigma
	    zstep = max (1., zstep)
	    zbin = max (1., zbin)

	    z1 = z1 - zstep
	    k = i
	    nmax = 0
	    repeat {
		z1 = z1 + zstep
		z2 = z1 + zbin
		for (; i < j && sample[i] < z1; i=i+1)
		    ;
		for (; k < j && sample[k] < z2; k=k+1)
		    ;
		if (k - i > nmax) {
		    nmax = k - i
		    mode = sample[(i+k)/2]
		}
	    } until (k >= j)
	}
end

procedure xt_statr (sample, nsample, frac, mean, sigma, median, mode)

real	sample[nsample]			#I Sample
int	nsample				#I Number of sample pixels
real	frac				#I Fraction of data to use
real	mean, sigma, median, mode	#O Statistics

int	i, j, k, nmax
real	z1, z2, zstep, zbin
bool	fp_equalr()

begin
	# Sort the sample.
	call asrtr (sample, sample, nsample)

	# Set fraction to use.
	i = max (1, 1 + nsample * (1. - frac) / 2.)
	j = min (nsample, 1 + nsample * (1. + frac) / 2.)
	z1 = sample[i]
	z2 = sample[j]

	# Compute the mean and sigma.
	call aavgr (sample[i], j-i+1, mean, sigma)

	# Compute the median.
	median =  sample[nsample/2]

	z1 = median - 2 * sigma
	if (z1 < sample[1])
	    i = 1
	else {
	    k = i
	    do i = k, 2, -1 {
		if (sample[i] <= z1)
		    break
	    }
	}
	z1 = sample[i]

	z2 = median + 2 * sigma
	if (z2 > sample[nsample])
	    i = nsample
	else {
	    k = j
	    do j = k, nsample-1 {
		if (sample[j] >= z1)
		    break
	    }
	}
	z2 = sample[j]

	# Compute the mode.

	if (nsample < NMIN)
	    mode = median

	else if (fp_equalr (z1, z2))
	    mode = z1

	else {
	    zstep = ZSTEP * sigma
	    zbin = ZBIN * sigma

	    z1 = z1 - zstep
	    k = i
	    nmax = 0
	    repeat {
		z1 = z1 + zstep
		z2 = z1 + zbin
		for (; i < j && sample[i] < z1; i=i+1)
		    ;
		for (; k < j && sample[k] < z2; k=k+1)
		    ;
		if (k - i > nmax) {
		    nmax = k - i
		    mode = sample[(i+k)/2]
		}
	    } until (k >= j)
	}
end

procedure xt_statd (sample, nsample, frac, mean, sigma, median, mode)

double	sample[nsample]			#I Sample
int	nsample				#I Number of sample pixels
real	frac				#I Fraction of data to use
double	mean, sigma, median, mode	#O Statistics

int	i, j, k, nmax
double	z1, z2, zstep, zbin
bool	fp_equald()

begin
	# Sort the sample.
	call asrtd (sample, sample, nsample)

	# Set fraction to use.
	i = max (1, 1 + nsample * (1. - frac) / 2.)
	j = min (nsample, 1 + nsample * (1. + frac) / 2.)
	z1 = sample[i]
	z2 = sample[j]

	# Compute the mean and sigma.
	call aavgd (sample[i], j-i+1, mean, sigma)

	# Compute the median.
	median =  sample[nsample/2]

	z1 = median - 2 * sigma
	if (z1 < sample[1])
	    i = 1
	else {
	    k = i
	    do i = k, 2, -1 {
		if (sample[i] <= z1)
		    break
	    }
	}
	z1 = sample[i]

	z2 = median + 2 * sigma
	if (z2 > sample[nsample])
	    i = nsample
	else {
	    k = j
	    do j = k, nsample-1 {
		if (sample[j] >= z1)
		    break
	    }
	}
	z2 = sample[j]

	# Compute the mode.

	if (nsample < NMIN)
	    mode = median

	else if (fp_equald (z1, z2))
	    mode = z1

	else {
	    zstep = ZSTEP * sigma
	    zbin = ZBIN * sigma

	    z1 = z1 - zstep
	    k = i
	    nmax = 0
	    repeat {
		z1 = z1 + zstep
		z2 = z1 + zbin
		for (; i < j && sample[i] < z1; i=i+1)
		    ;
		for (; k < j && sample[k] < z2; k=k+1)
		    ;
		if (k - i > nmax) {
		    nmax = k - i
		    mode = sample[(i+k)/2]
		}
	    } until (k >= j)
	}
end