1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <gki.h>
include <math.h>
include "ccp.h"
define DIAGSEP (1.0 * g_plwsep / 0.7071068) # dis at 40 degrees from plwsep
# CCP_POLYMARKER -- Draw a polymarker. The polymarker is defined by the array
# of points P, consisting of successive (x,y) coordinate pairs.
procedure ccp_polymarker (p, npts)
short p[ARB] # points defining line
int npts # number of points, i.e., (x,y) pairs
pointer pm
int i, j, len_p
real theta, x, y, tx, ty
include "ccp.com"
begin
if (npts <= 0)
return
len_p = npts * 2
# Keep track of the number of drawing instructions since the last frame
# clear.
g_ndraw = g_ndraw + 1
# Update polymarker attributes if necessary.
pm = CCP_PMAP(g_cc)
if (CCP_LTYPE(g_cc) != PM_LTYPE(pm)) {
call ccp_linetype (PM_LTYPE(pm))
CCP_LTYPE(g_cc) = PM_LTYPE(pm)
}
if (CCP_WIDTH(g_cc) != PM_WIDTH(pm))
CCP_WIDTH(g_cc) = PM_WIDTH(pm)
if (CCP_COLOR(g_cc) != PM_COLOR(pm)) {
call ccp_color (PM_COLOR(pm))
CCP_COLOR(g_cc) = PM_COLOR(pm)
}
# Draw the polymarker.
do i = 1, len_p, 2 {
# Draw the single point as a box with a diagonal
# through it.
theta = 0.5 * HALFPI
x = XTRAN(p[i])
y = YTRAN(p[i+1])
tx = x + DIAGSEP * cos (theta)
ty = y + DIAGSEP * sin (theta)
call plot (tx, ty, CCP_UP)
g_max_x = max (tx, g_max_x)
do j = 1, 4 {
theta = theta + HALFPI
tx = x + DIAGSEP * cos (theta)
ty = y + DIAGSEP * sin (theta)
call plot (tx, ty, CCP_DOWN)
}
# Fill in diagonal.
tx = x + DIAGSEP * cos (theta + PI)
ty = y + DIAGSEP * sin (theta + PI)
call plot (tx, ty, CCP_DOWN)
}
end
|