1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <math.h>
include <gset.h>
include <gki.h>
include "ccp.h"
define BASECS_X 12 # Base (size 1.0) char width in GKI coords.
define BASECS_Y 12 # Base (size 1.0) char height in GKI coords.
# CCP_TEXT -- Draw a text string. The string is drawn at the position (X,Y)
# using the text attributes set by the last GKI_TXSET instruction. The text
# string to be drawn may contain embedded set font escape sequences of the
# form \fR (roman), \fG (greek), etc. We break the input text sequence up
# into segments at font boundaries and draw these on the output device,
# setting the text size, color, font, and position at the beginning of each
# segment.
procedure ccp_text (xc, yc, text, n)
int xc, yc # where to draw text string
short text[ARB] # text string
int n # number of characters
real g_dx, g_dy # scale GKI to window coords
int g_x1, g_y1 # origin of device window
int g_x2, g_y2 # upper right corner of device window
real x, y, dx, dy, tsz, xto_nicesize, yto_nicesize
int x1, x2, y1, y2, orien
int x0, y0, gki_dx, gki_dy, ch, cw
int xstart, ystart, newx, newy
int totlen, polytext, font, seglen, quality
pointer sp, seg, ip, op, tx, first, pl
int ccx_segment()
include "ccp.com"
data g_dx /1.0/, g_dy /1.0/
data g_x1 /0/, g_y1 /0/, g_x2 /GKI_MAXNDC/, g_y2 / GKI_MAXNDC/
begin
call smark (sp)
call salloc (seg, n + 2, TY_CHAR)
# Keep track of the number of drawing instructions since the last frame
# clear.
g_ndraw = g_ndraw + 1
# Set pointer to the text attribute structure.
tx = CCP_TXAP(g_cc)
# Set the text size and color if not already set. Both should be
# invalidated when the screen is cleared. Text color should be
# invalidated whenever another color is set. The text size was
# set by ccp_txset, and is just a scaling factor.
CCP_TXSIZE(g_cc) = TX_SIZE(tx)
if (TX_COLOR(tx) != CCP_COLOR(g_cc)) {
call ccp_color (TX_COLOR(tx))
CCP_COLOR(g_cc) = TX_COLOR(tx)
}
# Set the character-generator quality. Only low (Calcomp "symbol")
# and other (ccp_font; see NSPP doc. on its font) are supported.
if (g_txquality == 0) {
quality = TX_QUALITY(tx) # param was specified "normal" to task
} else
quality = g_txquality # param was explicit to task
# Set the linetype to a solid line, and invalidate last setting.
call ccp_linetype (GL_SOLID) # for use in ccp_polyline
CCP_LTYPE(g_cc) = -1 # PL_LTYPE still contains current settng
# Set pointer to polyline attribute structure and set line width
# if necessary.
pl = CCP_PLAP(g_cc)
if (CCP_WIDTH(g_cc) != PL_WIDTH(pl)) {
if (GKI_UNPACKREAL(PL_WIDTH(pl)) < 1.5) {
CCP_WIDTH(g_cc) = GKI_PACKREAL(PL_SINGLE)
} else
CCP_WIDTH(g_cc) = PL_WIDTH(pl)
}
# Break the text string into segments at font boundaries and count
# the total number of printable characters.
totlen = ccx_segment (text, n, Memc[seg], TX_FONT(tx))
# Compute the text drawing parameters, i.e., the coordinates of the
# first character to be drawn, the step between successive characters,
# and the polytext flag (GKI coords).
call ccx_parameters (xc,yc, totlen, x0,y0, gki_dx,gki_dy, polytext,
orien)
# Scale the base sizes.
tsz = GKI_UNPACKREAL(TX_SIZE(tx)) # scale factor
ch = CCP_CHARHEIGHT(g_cc,1) * tsz
cw = CCP_CHARWIDTH(g_cc,1) * tsz
# Compute correction factors for absolute physical character sizes.
# This also corrects for distortion of high-qual text if xscale<>yscale.
xto_nicesize = g_xdefault_scale / g_xndcto_p
yto_nicesize = g_ydefault_scale / g_yndcto_p
# The first segment is drawn at (X0,Y0). The separation between
# characters is DX,DY. A segment is drawn as a block if the polytext
# flag is set, otherwise each character is drawn individually.
x = x0 * g_dx + g_x1
y = y0 * g_dy + g_y1
dx = gki_dx * g_dx
dy = gki_dy * g_dy
for (ip=seg; Memc[ip] != EOS; ip=ip+1) {
# Process the font control character heading the next segment.
font = Memc[ip]
ip = ip + 1
# Draw the segment.
while (Memc[ip] != EOS) {
# Clip leading out of bounds characters.
for (; Memc[ip] != EOS; ip=ip+1) {
x1 = x
x2 = x1 + cw * xto_nicesize
y1 = y
y2 = y1 + ch * yto_nicesize
if (x1 >= g_x1 && x2 <= g_x2 && y1 >= g_y1 && y2 <= g_y2)
break
else {
x = x + dx
y = y + dy
}
if (polytext == NO) {
ip = ip + 1
break
}
}
# Coords of first char to be drawn.
xstart = x
ystart = y
# Move OP to first out of bounds char.
for (op=ip; Memc[op] != EOS; op=op+1) {
x1 = x
x2 = x1 + cw * xto_nicesize
y1 = y
y2 = y1 + ch * yto_nicesize
if (x1 <= g_x1 || x2 >= g_x2 || y1 <= g_y1 || y2 >= g_y2)
break
else {
x = x + dx
y = y + dy
}
if (polytext == NO) {
op = op + 1
break
}
}
# Count number of inbounds chars.
seglen = op - ip
# Leave OP pointing to the end of this segment.
if (polytext == NO)
op = ip + 1
else {
while (Memc[op] != EOS)
op = op + 1
}
# Compute X,Y of next segment.
newx = xstart + (dx * (op - ip))
newy = ystart + dy
# Quit if no inbounds chars.
if (seglen == 0) {
x = newx
y = newy
ip = op
next
}
# Output the inbounds chars.
first = ip
x = xstart
y = ystart
while (seglen > 0 && (polytext == YES || ip == first)) {
call ccp_drawchar (Memc[ip], nint(x), nint(y), cw, ch,
orien, font, quality)
ip = ip + 1
seglen = seglen - 1
x = x + dx
y = y + dy
}
x = newx
y = newy
ip = op
}
}
call sfree (sp)
end
# CCX_SEGMENT -- Process the text string into segments, in the process
# converting from type short to char. The only text attribute that can
# change within a string is the font, so segments are broken by \fI, \fG,
# etc. font select sequences embedded in the text. The segments are encoded
# sequentially in the output string. The first character of each segment is
# the font number. A segment is delimited by EOS. A font number of EOS
# marks the end of the segment list. The output string is assumed to be
# large enough to hold the segmented text string.
int procedure ccx_segment (text, n, out, start_font)
short text[ARB] # input text
int n # number of characters in text
char out[ARB] # output string
int start_font # initial font code
int ip, op
int totlen, font
begin
out[1] = start_font
totlen = 0
op = 2
for (ip=1; ip <= n; ip=ip+1) {
if (text[ip] == '\\' && text[ip+1] == 'f') {
# Select font.
out[op] = EOS
op = op + 1
ip = ip + 2
switch (text[ip]) {
case 'B':
font = GT_BOLD
case 'I':
font = GT_ITALIC
case 'G':
font = GT_GREEK
default:
font = GT_ROMAN
}
out[op] = font
op = op + 1
} else {
# Deposit character in segment.
out[op] = text[ip]
op = op + 1
totlen = totlen + 1
}
}
# Terminate last segment and add null segment.
out[op] = EOS
out[op+1] = EOS
return (totlen)
end
# CCX_PARAMETERS -- Set the text drawing parameters, i.e., the coordinates
# of the lower left corner of the first character to be drawn, the spacing
# between characters, and the polytext flag. Input consists of the coords
# of the text string, the length of the string, and the text attributes
# defining the character size, justification in X and Y of the coordinates,
# and orientation of the string. All coordinates are in GKI units.
procedure ccx_parameters (xc, yc, totlen, x0, y0, dx, dy, polytext, orien)
int xc, yc # coordinates at which string is to be drawn
int totlen # number of characters to be drawn
int x0, y0 # lower left corner of first char to be drawn
int dx, dy # step in X and Y between characters
int polytext # OK to output text segment all at once
int orien # rotation angle of characters
pointer tx
int up, path
real dir, sz, ch, cw, cosv, sinv, space, xto_nicesize, yto_nicesize
real xsize, ysize, xvlen, yvlen, xu, yu, xv, yv, p, q, xtmp, ytmp
include "ccp.com"
begin
tx = CCP_TXAP(g_cc)
# Compute correction factors for absolute physical character sizes.
# This also removes any warping due to different xscale, yscale.
xto_nicesize = g_xdefault_scale / g_xndcto_p
yto_nicesize = g_ydefault_scale / g_yndcto_p
# Get character sizes in GKI(plotter) coords; scale y (ch) dimension
# to that of x for absolute scale systems that are different in x,y.
sz = GKI_UNPACKREAL (TX_SIZE(tx))
ch = CCP_CHARHEIGHT(g_cc,1) * sz
cw = CCP_CHARWIDTH(g_cc,1) * sz
# Compute the character rotation angle. This is independent of the
# direction in which characters are drawn. A character up vector of
# 90 degrees (normal) corresponds to a rotation angle of zero.
up = TX_UP(tx)
orien = up - 90
# Determine the direction in which characters are to be plotted.
# This depends on both the character up vector and the path, which
# is defined relative to the up vector.
path = TX_PATH(tx)
switch (path) {
case GT_UP:
dir = up
case GT_DOWN:
dir = up - 180
case GT_LEFT:
dir = up + 90
default: # GT_NORMAL, GT_RIGHT
dir = up - 90
}
# ------- DX, DY ---------
# Convert the direction vector into the step size between characters.
# Note CW and CH are in GKI coordinates, hence DX and DY are too.
# Additional spacing of some fraction of the character size is used
# if TX_SPACING is nonzero.
dir = -DEGTORAD(dir)
cosv = cos (dir)
sinv = sin (dir)
# Correct for spacing (unrotated and unscaled).
space = (1.0 + TX_SPACING(tx))
if (path == GT_UP || path == GT_DOWN)
p = ch * space
else
p = cw * space
q = 0
# Correct for rotation, scaling differences, and absolute size.
dx = ( p * cosv + q * sinv) * xto_nicesize
dy = (-p * sinv + q * cosv) * yto_nicesize
# ------- XU, YU ---------
# Determine the coordinates of the center of the first character req'd
# to justify the string, assuming dimensionless characters spaced on
# centers DX,DY apart.
xvlen = dx * (totlen - 1)
yvlen = dy * (totlen - 1)
switch (TX_HJUSTIFY(tx)) {
case GT_CENTER:
xu = - (xvlen / 2.0)
case GT_RIGHT:
# If right justify and drawing to the left, no offset req'd.
if (xvlen < 0)
xu = 0
else
xu = -xvlen
default: # GT_LEFT, GT_NORMAL
# If left justify and drawing to the left, full offset right req'd.
if (xvlen < 0)
xu = -xvlen
else
xu = 0
}
switch (TX_VJUSTIFY(tx)) {
case GT_CENTER:
yu = - (yvlen / 2.0)
case GT_TOP:
# If top justify and drawing downward, no offset req'd.
if (yvlen < 0)
yu = 0
else
yu = -yvlen
default: # GT_BOTTOM, GT_NORMAL
# If bottom justify and drawing downward, full offset up req'd.
if (yvlen < 0)
yu = -yvlen
else
yu = 0
}
# ------- XV, YV ---------
# Compute the offset from the center of a single character required
# to justify that character, given a particular character up vector.
# (This could be combined with the above case but is clearer if
# treated separately.)
p = -DEGTORAD(orien)
cosv = cos(p)
sinv = sin(p)
# Compute the rotated character size in X and Y.
xsize = abs ( cw * cosv + ch * sinv) * xto_nicesize
ysize = abs (-cw * sinv + ch * cosv) * yto_nicesize
switch (TX_HJUSTIFY(tx)) {
case GT_CENTER:
xv = 0
case GT_RIGHT:
xv = - (xsize / 2.0)
default: # GT_LEFT, GT_NORMAL
xv = xsize / 2
}
switch (TX_VJUSTIFY(tx)) {
case GT_CENTER:
yv = 0
case GT_TOP:
yv = - (ysize / 2.0)
default: # GT_BOTTOM, GT_NORMAL
yv = ysize / 2
}
# ------- X0, Y0 ---------
# The center coordinates of the first character to be drawn are given
# by the reference position plus the string justification vector plus
# the character justification vector.
x0 = xc + xu + xv
y0 = yc + yu + yv
# The character drawing primitive requires the coordinates of the
# lower left corner of the character (irrespective of orientation).
# Compute the vector from the center of a character to the lower left
# corner of a character, rotate to the given orientation, and correct
# the starting coordinates by addition of this vector.
p = - (cw / 2.0)
q = - (ch / 2.0)
xtmp = ( p * cosv + q * sinv) * xto_nicesize
ytmp = (-p * sinv + q * cosv) * yto_nicesize
x0 = x0 + xtmp
y0 = y0 + ytmp
# ------- POLYTEXT ---------
# Set the polytext flag. Polytext output is possible only if chars
# are to be drawn to the right with no extra spacing between chars.
if (abs(dy) == 0 && dx == cw)
polytext = YES
else
polytext = NO
end
|