1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
SUBROUTINE CONCAL (XD,YD,ZD,NT,IPT,NL,IPL,PDD,ITI,XII,YII,ZII,
1 ITPV)
C
C +-----------------------------------------------------------------+
C | |
C | Copyright (C) 1986 by UCAR |
C | University Corporation for Atmospheric Research |
C | All Rights Reserved |
C | |
C | NCARGRAPHICS Version 1.00 |
C | |
C +-----------------------------------------------------------------+
C
C
C
C THIS SUBROUTINE PERFORMS PUNCTUAL INTERPOLATION OR EXTRAPO-
C LATION, I.E., DETERMINES THE Z VALUE AT A POINT.
C THE INPUT PARAMETERS ARE
C
C XD,YD,ZD = ARRAYS CONTAINING THE X, Y, AND Z
C COORDINATES OF DATA POINTS,
C NT = NUMBER OF TRIANGLES,
C IPT = INTEGER ARRAY CONTAINING THE POINT NUMBERS OF
C THE VERTEXES OF THE TRIANGLES,
C NL = NUMBER OF BORDER LINE SEGMENTS,
C IPL = INTEGER ARRAY CONTAINING THE POINT NUMBERS OF
C THE END POINTS OF THE BORDER LINE SEGMENTS AND
C THEIR RESPECTIVE TRIANGLE NUMBERS,
C PDD = ARRAY CONTAINING THE PARTIAL DERIVATIVES AT
C THE DATA POINTS,
C ITI = TRIANGLE NUMBER OF THE TRIANGLE IN WHICH LIES
C THE POINT FOR WHICH INTERPOLATION IS TO BE
C PERFORMED,
C XII,YII = X AND Y COORDINATES OF THE POINT FOR WHICH
C INTERPOLATION IS TO BE PERFORMED.
C THE OUTPUT PARAMETER IS
C
C ZII = INTERPOLATED Z VALUE.
C
C DECLARATION STATEMENTS
C
C
DIMENSION XD(1) ,YD(1) ,ZD(1) ,IPT(1) ,
1 IPL(1) ,PDD(1)
DIMENSION X(3) ,Y(3) ,Z(3) ,PD(15) ,
1 ZU(3) ,ZV(3) ,ZUU(3) ,ZUV(3) ,
2 ZVV(3)
REAL LU ,LV
EQUIVALENCE (P5,P50)
C
SAVE
C
C PRELIMINARY PROCESSING
C
IT0 = ITI
NTL = NT+NL
IF (IT0 .LE. NTL) GO TO 100
IL1 = IT0/NTL
IL2 = IT0-IL1*NTL
IF (IL1 .EQ. IL2) GO TO 150
GO TO 200
C
C CALCULATION OF ZII BY INTERPOLATION.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
C
100 IF (IT0 .EQ. ITPV) GO TO 140
C
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE
C IPI 102 VERTEXES.
C IPI 103
C
JIPT = 3*(IT0-1)
JPD = 0
DO 120 I=1,3
JIPT = JIPT+1
IDP = IPT(JIPT)
X(I) = XD(IDP)
Y(I) = YD(IDP)
Z(I) = ZD(IDP)
JPDD = 5*(IDP-1)
DO 110 KPD=1,5
JPD = JPD+1
JPDD = JPDD+1
PD(JPD) = PDD(JPDD)
110 CONTINUE
120 CONTINUE
C
C DETERMINES THE COEFFICIENTS FOR THE COORDINATE SYSTEM
C TRANSFORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM
C AND VICE VERSA.
C
X0 = X(1)
Y0 = Y(1)
A = X(2)-X0
B = X(3)-X0
C = Y(2)-Y0
D = Y(3)-Y0
AD = A*D
BC = B*C
DLT = AD-BC
AP = D/DLT
BP = -B/DLT
CP = -C/DLT
DP = A/DLT
C
C CONVERTS THE PARTIAL DERIVATIVES AT THE VERTEXES OF THE
C TRIANGLE FOR THE U-V COORDINATE SYSTEM.
C
AA = A*A
ACT2 = 2.0*A*C
CC = C*C
AB = A*B
ADBC = AD+BC
CD = C*D
BB = B*B
BDT2 = 2.0*B*D
DD = D*D
DO 130 I=1,3
JPD = 5*I
ZU(I) = A*PD(JPD-4)+C*PD(JPD-3)
ZV(I) = B*PD(JPD-4)+D*PD(JPD-3)
ZUU(I) = AA*PD(JPD-2)+ACT2*PD(JPD-1)+CC*PD(JPD)
ZUV(I) = AB*PD(JPD-2)+ADBC*PD(JPD-1)+CD*PD(JPD)
ZVV(I) = BB*PD(JPD-2)+BDT2*PD(JPD-1)+DD*PD(JPD)
130 CONTINUE
C
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
C
P00 = Z(1)
P10 = ZU(1)
P01 = ZV(1)
P20 = 0.5*ZUU(1)
P11 = ZUV(1)
P02 = 0.5*ZVV(1)
H1 = Z(2)-P00-P10-P20
H2 = ZU(2)-P10-ZUU(1)
H3 = ZUU(2)-ZUU(1)
P30 = 10.0*H1-4.0*H2+0.5*H3
P40 = -15.0*H1+7.0*H2-H3
P50 = 6.0*H1-3.0*H2+0.5*H3
H1 = Z(3)-P00-P01-P02
H2 = ZV(3)-P01-ZVV(1)
H3 = ZVV(3)-ZVV(1)
P03 = 10.0*H1-4.0*H2+0.5*H3
P04 = -15.0*H1+7.0*H2-H3
P05 = 6.0*H1-3.0*H2+0.5*H3
LU = SQRT(AA+CC)
LV = SQRT(BB+DD)
THXU = ATAN2(C,A)
THUV = ATAN2(D,B)-THXU
CSUV = COS(THUV)
P41 = 5.0*LV*CSUV/LU*P50
P14 = 5.0*LU*CSUV/LV*P05
H1 = ZV(2)-P01-P11-P41
H2 = ZUV(2)-P11-4.0*P41
P21 = 3.0*H1-H2
P31 = -2.0*H1+H2
H1 = ZU(3)-P10-P11-P14
H2 = ZUV(3)-P11-4.0*P14
P12 = 3.0*H1-H2
P13 = -2.0*H1+H2
THUS = ATAN2(D-C,B-A)-THXU
THSV = THUV-THUS
AA = SIN(THSV)/LU
BB = -COS(THSV)/LU
CC = SIN(THUS)/LV
DD = COS(THUS)/LV
AC = AA*CC
AD = AA*DD
BC = BB*CC
G1 = AA*AC*(3.0*BC+2.0*AD)
G2 = CC*AC*(3.0*AD+2.0*BC)
H1 = -AA*AA*AA*(5.0*AA*BB*P50+(4.0*BC+AD)*P41)-
1 CC*CC*CC*(5.0*CC*DD*P05+(4.0*AD+BC)*P14)
H2 = 0.5*ZVV(2)-P02-P12
H3 = 0.5*ZUU(3)-P20-P21
P22 = (G1*H2+G2*H3-H1)/(G1+G2)
P32 = H2-P22
P23 = H3-P22
ITPV = IT0
C
C CONVERTS XII AND YII TO U-V SYSTEM.
C
140 DX = XII-X0
DY = YII-Y0
U = AP*DX+BP*DY
V = CP*DX+DP*DY
C
C EVALUATES THE POLYNOMIAL.
C
P0 = P00+V*(P01+V*(P02+V*(P03+V*(P04+V*P05))))
P1 = P10+V*(P11+V*(P12+V*(P13+V*P14)))
P2 = P20+V*(P21+V*(P22+V*P23))
P3 = P30+V*(P31+V*P32)
P4 = P40+V*P41
ZII = P0+U*(P1+U*(P2+U*(P3+U*(P4+U*P5))))
RETURN
C
C CALCULATION OF ZII BY EXTRATERPOLATION IN THE RECTANGLE.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
C
150 IF (IT0 .EQ. ITPV) GO TO 190
C
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE END
C POINTS OF THE BORDER LINE SEGMENT.
C
JIPL = 3*(IL1-1)
JPD = 0
DO 170 I=1,2
JIPL = JIPL+1
IDP = IPL(JIPL)
X(I) = XD(IDP)
Y(I) = YD(IDP)
Z(I) = ZD(IDP)
JPDD = 5*(IDP-1)
DO 160 KPD=1,5
JPD = JPD+1
JPDD = JPDD+1
PD(JPD) = PDD(JPDD)
160 CONTINUE
170 CONTINUE
C
C DETERMINES THE COEFFICIENTS FOR THE COORDINATE SYSTEM
C TRANSFORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM
C AND VICE VERSA.
C
X0 = X(1)
Y0 = Y(1)
A = Y(2)-Y(1)
B = X(2)-X(1)
C = -B
D = A
AD = A*D
BC = B*C
DLT = AD-BC
AP = D/DLT
BP = -B/DLT
CP = -BP
DP = AP
C
C CONVERTS THE PARTIAL DERIVATIVES AT THE END POINTS OF THE
C BORDER LINE SEGMENT FOR THE U-V COORDINATE SYSTEM.
C
AA = A*A
ACT2 = 2.0*A*C
CC = C*C
AB = A*B
ADBC = AD+BC
CD = C*D
BB = B*B
BDT2 = 2.0*B*D
DD = D*D
DO 180 I=1,2
JPD = 5*I
ZU(I) = A*PD(JPD-4)+C*PD(JPD-3)
ZV(I) = B*PD(JPD-4)+D*PD(JPD-3)
ZUU(I) = AA*PD(JPD-2)+ACT2*PD(JPD-1)+CC*PD(JPD)
ZUV(I) = AB*PD(JPD-2)+ADBC*PD(JPD-1)+CD*PD(JPD)
ZVV(I) = BB*PD(JPD-2)+BDT2*PD(JPD-1)+DD*PD(JPD)
180 CONTINUE
C
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
C
P00 = Z(1)
P10 = ZU(1)
P01 = ZV(1)
P20 = 0.5*ZUU(1)
P11 = ZUV(1)
P02 = 0.5*ZVV(1)
H1 = Z(2)-P00-P01-P02
H2 = ZV(2)-P01-ZVV(1)
H3 = ZVV(2)-ZVV(1)
P03 = 10.0*H1-4.0*H2+0.5*H3
P04 = -15.0*H1+7.0*H2-H3
P05 = 6.0*H1-3.0*H2+0.5*H3
H1 = ZU(2)-P10-P11
H2 = ZUV(2)-P11
P12 = 3.0*H1-H2
P13 = -2.0*H1+H2
P21 = 0.0
P23 = -ZUU(2)+ZUU(1)
P22 = -1.5*P23
ITPV = IT0
C
C CONVERTS XII AND YII TO U-V SYSTEM.
C
190 DX = XII-X0
DY = YII-Y0
U = AP*DX+BP*DY
V = CP*DX+DP*DY
C
C EVALUATES THE POLYNOMIAL.
C
P0 = P00+V*(P01+V*(P02+V*(P03+V*(P04+V*P05))))
P1 = P10+V*(P11+V*(P12+V*P13))
P2 = P20+V*(P21+V*(P22+V*P23))
ZII = P0+U*(P1+U*P2)
RETURN
C
C CALCULATION OF ZII BY EXTRATERPOLATION IN THE TRIANGLE.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
C
200 IF (IT0 .EQ. ITPV) GO TO 220
C
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE VERTEX
C OF THE TRIANGLE.
C
JIPL = 3*IL2-2
IDP = IPL(JIPL)
X(1) = XD(IDP)
Y(1) = YD(IDP)
Z(1) = ZD(IDP)
JPDD = 5*(IDP-1)
DO 210 KPD=1,5
JPDD = JPDD+1
PD(KPD) = PDD(JPDD)
210 CONTINUE
C
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
C
P00 = Z(1)
P10 = PD(1)
P01 = PD(2)
P20 = 0.5*PD(3)
P11 = PD(4)
P02 = 0.5*PD(5)
ITPV = IT0
C
C CONVERTS XII AND YII TO U-V SYSTEM.
C
220 U = XII-X(1)
V = YII-Y(1)
C
C EVALUATES THE POLYNOMIAL.
C
P0 = P00+V*(P01+V*P02)
P1 = P10+V*P11
ZII = P0+U*(P1+U*P20)
RETURN
END
|