1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
SUBROUTINE KURV1S (N,X,Y,SLOP1,SLOPN,XP,YP,TEMP,S,SIGMA,ISLPSW)
C
C
C +-----------------------------------------------------------------+
C | |
C | Copyright (C) 1986 by UCAR |
C | University Corporation for Atmospheric Research |
C | All Rights Reserved |
C | |
C | NCARGRAPHICS Version 1.00 |
C | |
C +-----------------------------------------------------------------+
C
C
C
C DIMENSION OF X(N),Y(N),XP(N),YP(N),TEMP(N)
C ARGUMENTS
C
C LATEST REVISION FEBRUARY 5, 1974
C
C PURPOSE KURV1S DETERMINES THE PARAMETERS NECESSARY TO
C COMPUTE A SPLINE UNDER TENSION PASSING THROUGH
C A SEQUENCE OF PAIRS
C (X(1),Y(1)),...,(X(N),Y(N)) IN THE PLANE.
C THE SLOPES AT THE TWO ENDS OF THE CURVE MAY BE
C SPECIFIED OR OMITTED. FOR ACTUAL COMPUTATION
C OF POINTS ON THE CURVE IT IS NECESSARY TO CALL
C THE SUBROUTINE KURV2S.
C
C USAGE CALL KURV1S(N,X,Y,SLP1,SLPN,XP,YP,TEMP,S,SIGMA)
C
C ARGUMENTS
C
C ON INPUT N
C IS THE NUMBER OF POINTS TO BE INTERPOLATED
C (N .GE. 2).
C
C X
C IS AN ARRAY CONTAINING THE N X-COORDINATES
C OF THE POINTS.
C
C Y
C IS AN ARRAY CONTAINING THE N Y-COORDINATES
C OF THE POINTS.
C
C SLOP1 AND SLOPN
C CONTAIN THE DESIRED VALUES FOR THE SLOPE OF
C THE CURVE AT (X(1),Y(1)) AND (X(N),Y(N)),
C RESPECTIVELY. THESE QUANTITIES ARE IN
C DEGREES AND MEASURED COUNTER-CLOCKWISE
C FROM THE POSITIVE X-AXIS. IF ISLPSW IS NON-
C ZERO, ONE OR BOTH OF SLP1 AND SLPN MAY BE
C DETERMINED INTERNALLY BY KURV1S.
C
C XP AND YP
C ARE ARRAYS OF LENGTH AT LEAST N.
C
C TEMP
C IS AN ARRAY OF LENGTH AT LEAST N WHICH IS
C USED FOR SCRATCH STORAGE.
C
C SIGMA
C CONTAINS THE TENSION FACTOR. THIS IS
C NON-ZERO AND INDICATES THE CURVINESS DESIRED.
C IF ABS(SIGMA) IS VERY LARGE (E.G., 50.) THE
C RESULTING CURVE IS VERY NEARLY A POLYGONAL
C LINE. A STANDARD VALUE FOR SIGMA IS ABOUT 2.
C
C ISLPSW
C IS AN INTEGER INDICATING WHICH END SLOPES
C HAVE BEEN USER PROVIDED AND WHICH MUST BE
C COMPUTED BY KURV1S. FOR ISLPSW
C = 0 INDICATES BOTH SLOPES ARE PROVIDED,
C = 1 ONLY SLOP1 IS PROVIDED,
C = 2 ONLY SLOPN IS PROVIDED,
C = 3 NEITHER SLOP1 NOR SLOPN IS PROVIDED.
C = 4 NEITHER SLOP1 NOR SLOPN IS PROVIDED,
C BUT SLOP1=SLOPN. IN THIS CASE X(1)=
C X(N), Y(1)=Y(N) AND N.GE.3.
C ON OUTPUT XP AND YP
C CONTAIN INFORMATION ABOUT THE CURVATURE OF
C THE CURVE AT THE GIVEN NODES.
C
C S
C CONTAINS THE POLYGONAL ARCLENGTH OF THE
C CURVE.
C
C N, X, Y, SLP1, SLPN, SIGMA AND ISLPSW ARE
C UNCHANGED.
C
C ENTRY POINTS KURV1S
C
C SPECIAL CONDITIONS NONE
C
C COMMON BLOCKS NONE
C
C I/O NONE
C
C PRECISION SINGLE
C
C REQUIRED ULIB NONE
C ROUTINES
C
C SPECIALIST RUSSELL K. REW, NCAR, BOULDER, COLORADO 80302
C
C LANGUAGE FORTRAN
C
C HISTORY ORIGINALLY WRITTEN BY A. K. CLINE, MARCH 1972.
C
C
C
C
INTEGER N
REAL X(N) ,Y(N) ,XP(N) ,YP(N) ,
1 TEMP(N) ,S ,SIGMA
SAVE
C
DATA PI /3.1415926535897932/
C
NN = N
JSLPSW = ISLPSW
SLP1 = SLOP1
SLPN = SLOPN
DEGRAD = PI/180.
NM1 = NN-1
NP1 = NN+1
DELX1 = X(2)-X(1)
DELY1 = Y(2)-Y(1)
DELS1 = SQRT(DELX1*DELX1+DELY1*DELY1)
DX1 = DELX1/DELS1
DY1 = DELY1/DELS1
C
C DETERMINE SLOPES IF NECESSARY
C
IF (JSLPSW .NE. 0) GO TO 70
10 SLPP1 = SLP1*DEGRAD
SLPPN = SLPN*DEGRAD
C
C SET UP RIGHT HAND SIDES OF TRIDIAGONAL LINEAR SYSTEM FOR XP
C AND YP
C
XP(1) = DX1-COS(SLPP1)
YP(1) = DY1-SIN(SLPP1)
TEMP(1) = DELS1
SS = DELS1
IF (NN .EQ. 2) GO TO 30
DO 20 I=2,NM1
DELX2 = X(I+1)-X(I)
DELY2 = Y(I+1)-Y(I)
DELS2 = SQRT(DELX2*DELX2+DELY2*DELY2)
DX2 = DELX2/DELS2
DY2 = DELY2/DELS2
XP(I) = DX2-DX1
YP(I) = DY2-DY1
TEMP(I) = DELS2
DELX1 = DELX2
DELY1 = DELY2
DELS1 = DELS2
DX1 = DX2
DY1 = DY2
C
C ACCUMULATE POLYGONAL ARCLENGTH
C
SS = SS+DELS1
20 CONTINUE
30 XP(NN) = COS(SLPPN)-DX1
YP(NN) = SIN(SLPPN)-DY1
C
C DENORMALIZE TENSION FACTOR
C
SIGMAP = ABS(SIGMA)*FLOAT(NN-1)/SS
C
C PERFORM FORWARD ELIMINATION ON TRIDIAGONAL SYSTEM
C
S = SS
DELS = SIGMAP*TEMP(1)
EXPS = EXP(DELS)
SINHS = .5*(EXPS-1./EXPS)
SINHIN = 1./(TEMP(1)*SINHS)
DIAG1 = SINHIN*(DELS*.5*(EXPS+1./EXPS)-SINHS)
DIAGIN = 1./DIAG1
XP(1) = DIAGIN*XP(1)
YP(1) = DIAGIN*YP(1)
SPDIAG = SINHIN*(SINHS-DELS)
TEMP(1) = DIAGIN*SPDIAG
IF (NN .EQ. 2) GO TO 50
DO 40 I=2,NM1
DELS = SIGMAP*TEMP(I)
EXPS = EXP(DELS)
SINHS = .5*(EXPS-1./EXPS)
SINHIN = 1./(TEMP(I)*SINHS)
DIAG2 = SINHIN*(DELS*(.5*(EXPS+1./EXPS))-SINHS)
DIAGIN = 1./(DIAG1+DIAG2-SPDIAG*TEMP(I-1))
XP(I) = DIAGIN*(XP(I)-SPDIAG*XP(I-1))
YP(I) = DIAGIN*(YP(I)-SPDIAG*YP(I-1))
SPDIAG = SINHIN*(SINHS-DELS)
TEMP(I) = DIAGIN*SPDIAG
DIAG1 = DIAG2
40 CONTINUE
50 DIAGIN = 1./(DIAG1-SPDIAG*TEMP(NM1))
XP(NN) = DIAGIN*(XP(NN)-SPDIAG*XP(NM1))
YP(NN) = DIAGIN*(YP(NN)-SPDIAG*YP(NM1))
C
C PERFORM BACK SUBSTITUTION
C
DO 60 I=2,NN
IBAK = NP1-I
XP(IBAK) = XP(IBAK)-TEMP(IBAK)*XP(IBAK+1)
YP(IBAK) = YP(IBAK)-TEMP(IBAK)*YP(IBAK+1)
60 CONTINUE
RETURN
70 IF (NN .EQ. 2) GO TO 100
C
C IF NO SLOPES ARE GIVEN, USE SECOND ORDER INTERPOLATION ON
C INPUT DATA FOR SLOPES AT ENDPOINTS
C
IF (JSLPSW .EQ. 4) GO TO 90
IF (JSLPSW .EQ. 2) GO TO 80
DELNM1 = SQRT((X(NN-2)-X(NM1))**2+(Y(NN-2)-Y(NM1))**2)
DELN = SQRT((X(NM1)-X(NN))**2+(Y(NM1)-Y(NN))**2)
DELNN = DELNM1+DELN
C1 = (DELNN+DELN)/DELNN/DELN
C2 = -DELNN/DELN/DELNM1
C3 = DELN/DELNN/DELNM1
SX = C3*X(NN-2)+C2*X(NM1)+C1*X(NN)
SY = C3*Y(NN-2)+C2*Y(NM1)+C1*Y(NN)
C
SLPN = ATAN2(SY,SX)/DEGRAD
80 IF (JSLPSW .EQ. 1) GO TO 10
DELS2 = SQRT((X(3)-X(2))**2+(Y(3)-Y(2))**2)
DELS12 = DELS1+DELS2
C1 = -(DELS12+DELS1)/DELS12/DELS1
C2 = DELS12/DELS1/DELS2
C3 = -DELS1/DELS12/DELS2
SX = C1*X(1)+C2*X(2)+C3*X(3)
SY = C1*Y(1)+C2*Y(2)+C3*Y(3)
C
SLP1 = ATAN2(SY,SX)/DEGRAD
GO TO 10
90 DELN = SQRT((X(NM1)-X(NN))**2+(Y(NM1)-Y(NN))**2)
DELNN = DELS1+DELN
C1 = -DELS1/DELN/DELNN
C2 = (DELS1-DELN)/DELS1/DELN
C3 = DELN/DELNN/DELS1
SX = C1*X(NM1)+C2*X(1)+C3*X(2)
SY = C1*Y(NM1)+C2*Y(1)+C3*Y(2)
IF (SX.EQ.0. .AND. SY.EQ.0.) SX = 1.
SLP1 = ATAN2(SY,SX)/DEGRAD
SLPN = SLP1
GO TO 10
C
C IF ONLY TWO POINTS AND NO SLOPES ARE GIVEN, USE STRAIGHT
C LINE SEGMENT FOR CURVE
C
100 IF (JSLPSW .NE. 3) GO TO 110
XP(1) = 0.
XP(2) = 0.
YP(1) = 0.
YP(2) = 0.
C
SLP1 = ATAN2(Y(2)-Y(1),X(2)-X(1))/DEGRAD
SLPN = SLP1
RETURN
C
110 IF (JSLPSW .EQ. 2)
1 SLP1 = ATAN2(Y(2)-Y(1)-SLPN*(X(2)-X(1)),
2 X(2)-X(1)-SLPN*(Y(2)-Y(1)))/DEGRAD
C
IF (JSLPSW .EQ. 1)
1 SLPN = ATAN2(Y(2)-Y(1)-SLP1*(X(2)-X(1)),
2 X(2)-X(1)-SLP1*(Y(2)-Y(1)))/DEGRAD
GO TO 10
END
SUBROUTINE KURV2S (T,XS,YS,N,X,Y,XP,YP,S,SIGMA,NSLPSW,SLP)
C
C
C
C DIMENSION OF X(N),Y(N),XP(N),YP(N)
C ARGUMENTS
C
C LATEST REVISION OCTOBER 22, 1973
C
C PURPOSE KURV2S PERFORMS THE MAPPING OF POINTS IN THE
C INTERVAL (0.,1.) ONTO A CURVE IN THE PLANE.
C THE SUBROUTINE KURV1S SHOULD BE CALLED EARLIER
C TO DETERMINE CERTAIN NECESSARY PARAMETERS.
C THE RESULTING CURVE HAS A PARAMETRIC
C REPRESENTATION BOTH OF WHOSE COMPONENTS ARE
C SPLINES UNDER TENSION AND FUNCTIONS OF THE
C POLYGONAL ARCLENGTH PARAMETER.
C
C ACCESS CARDS *FORTRAN,S=ULIB,N=KURV
C *COSY
C
C USAGE CALL KURV2S (T,XS,YS,N,X,Y,XP,YP,S,SIGMA)
C
C ARGUMENTS
C
C ON INPUT T
C CONTAINS A REAL VALUE OF ABSOLUTE VALUE LESS
C THAN OR EQUAL TO 1. TO BE MAPPED TO A POINT
C ON THE CURVE. THE SIGN OF T IS IGNORED AND
C THE INTERVAL (0.,1.) IS MAPPED ONTO THE
C ENTIRE CURVE. IF T IS NEGATIVE, THIS
C INDICATES THAT THE SUBROUTINE HAS BEEN CALLED
C PREVIOUSLY (WITH ALL OTHER INPUT VARIABLES
C UNALTERED) AND THAT THIS VALUE OF T EXCEEDS
C THE PREVIOUS VALUE IN ABSOLUTE VALUE. WITH
C SUCH INFORMATION THE SUBROUTINE IS ABLE TO
C MAP THE POINT MUCH MORE RAPIDLY. THUS IF THE
C USER SEEKS TO MAP A SEQUENCE OF POINTS ONTO
C THE SAME CURVE, EFFICIENCY IS GAINED BY
C ORDERING THE VALUES INCREASING IN MAGNITUDE
C AND SETTING THE SIGNS OF ALL BUT THE FIRST
C NEGATIVE.
C
C N
C CONTAINS THE NUMBER OF POINTS WHICH WERE
C INTERPOLATED TO DETERMINE THE CURVE.
C
C X AND Y
C ARRAYS CONTAINING THE X- AND Y-COORDINATES
C OF THE INTERPOLATED POINTS.
C
C XP AND YP
C ARE THE ARRAYS OUTPUT FROM KURV1 CONTAINING
C CURVATURE INFORMATION.
C
C S
C CONTAINS THE POLYGONAL ARCLENGTH OF THE
C CURVE.
C
C SIGMA
C CONTAINS THE TENSION FACTOR (ITS SIGN IS
C IGNORED).
C
C NSLPSW
C IS AN INTEGER SWITCH WHICH TURNS ON OR OFF
C THE CALCULATION OF SLP
C NSLPSW
C = 0 INDICATES THAT SLP WILL NOT BE
C CALCULATED
C = 1 SLP WILL BE CALCULATED
C
C THE PARAMETERS N, X, Y, XP, YP, S AND SIGMA
C SHOULD BE INPUT UNALTERED FROM THE OUTPUT OF
C KURV1S.
C
C ON OUTPUT XS AND YS
C CONTAIN THE X- AND Y-COORDINATES OF THE IMAGE
C POINT ON THE CURVE.
C
C SLP
C CONTAINS THE SLOPE OF THE CURVE IN DEGREES AT
C THIS POINT.
C
C T, N, X, Y, XP, YP, S AND SIGMA ARE UNALTERED.
C
C ENTRY POINTS KURV2S
C
C SPECIAL CONDITIONS NONE
C
C COMMON BLOCKS NONE
C
C I/O NONE
C
C PRECISION SINGLE
C
C REQUIRED ULIB NONE
C ROUTINES
C
C SPECIALIST RUSSELL K. REW, NCAR, BOULDER, COLORADO 80302
C
C LANGUAGE FORTRAN
C
C HISTORY ORIGINALLY WRITTEN BY A. K. CLINE, MARCH 1972.
C
C
C
C
INTEGER N
REAL T ,XS ,YS ,X(N) ,
1 Y(N) ,XP(N) ,YP(N) ,S ,
2 SIGMA ,SLP
SAVE
C
DATA PI /3.1415926535897932/
C
C
C DENORMALIZE SIGMA
C
SIGMAP = ABS(SIGMA)*FLOAT(N-1)/S
C
C STRETCH UNIT INTERVAL INTO ARCLENGTH DISTANCE
C
TN = ABS(T*S)
C
C FOR NEGATIVE T START SEARCH WHERE PREVIOUSLY TERMINATED,
C OTHERWISE START FROM BEGINNING
C
IF (T .LT. 0.) GO TO 10
DEGRAD = PI/180.
I1 = 2
XS = X(1)
YS = Y(1)
SUM = 0.
IF (T .LT. 0.) RETURN
C
C DETERMINE INTO WHICH SEGMENT TN IS MAPPED
C
10 DO 30 I=I1,N
DELX = X(I)-X(I-1)
DELY = Y(I)-Y(I-1)
DELS = SQRT(DELX*DELX+DELY*DELY)
IF (SUM+DELS-TN) 20,40,40
20 SUM = SUM+DELS
30 CONTINUE
C
C IF ABS(T) IS GREATER THAN 1., RETURN TERMINAL POINT ON
C CURVE
C
XS = X(N)
YS = Y(N)
RETURN
C
C SET UP AND PERFORM INTERPOLATION
C
40 DEL1 = TN-SUM
DEL2 = DELS-DEL1
EXPS1 = EXP(SIGMAP*DEL1)
SINHD1 = .5*(EXPS1-1./EXPS1)
EXPS2 = EXP(SIGMAP*DEL2)
SINHD2 = .5*(EXPS2-1./EXPS2)
EXPS = EXPS1*EXPS2
SINHS = .5*(EXPS-1./EXPS)
XS = (XP(I)*SINHD1+XP(I-1)*SINHD2)/SINHS+
1 ((X(I)-XP(I))*DEL1+(X(I-1)-XP(I-1))*DEL2)/DELS
YS = (YP(I)*SINHD1+YP(I-1)*SINHD2)/SINHS+
1 ((Y(I)-YP(I))*DEL1+(Y(I-1)-YP(I-1))*DEL2)/DELS
I1 = I
IF (NSLPSW .EQ. 0) RETURN
COSHD1 = .5*(EXPS1+1./EXPS1)*SIGMAP
COSHD2 = .5*(EXPS2+1./EXPS2)*SIGMAP
XT = (XP(I)*COSHD1-XP(I-1)*COSHD2)/SINHS+
1 ((X(I)-XP(I))-(X(I-1)-XP(I-1)))/DELS
YT = (YP(I)*COSHD1-YP(I-1)*COSHD2)/SINHS+
1 ((Y(I)-YP(I))-(Y(I-1)-YP(I-1)))/DELS
SLP = ATAN2(YT,XT)/DEGRAD
RETURN
END
|