1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <gki.h>
include <gset.h>
include "gkt.h"
# Number of grey scale symbols
define NSYMBOL 11
define TSIZE (1.0/2.0)
# GKT_PUTCELLARRAY -- Draw a cell array, i.e., two dimensional array of pixels
# (greylevels or colors).
procedure gkt_putcellarray (m, nc, nr, ax1,ay1, ax2,ay2)
short m[ARB] # cell array
int nc, nr # number of pixels in X and Y
# (number of columns[x], rows[y]
int ax1, ay1 # lower left corner of output window
int ax2, ay2 # upper right corner of output window
int x1,y1,x2,y2 # device coordinates
real px1, py1, px2, py2
int nx, ny, y
real skip_x, skip_y, sx, sy
real blockx, blocky, bcy
int i, j, startrow, element
real xres, yres
pointer sp, cell, tx, txsave
bool ca, use_orig, new_row, pr
real z_scale
real charheight, charwidth
real delta_y
int xrep, yrep
include "gkt.com"
begin
call smark(sp)
# Keep track of the number of drawing instructions since the last frame
# clear.
g_ndraw = g_ndraw + 1
skip_x = 1.0
skip_y = 1.0
blockx = 1.0
blocky = 1.0
# Determine if can do real cell array. If not, use character
# sized boxes as pixels. In that case, we need to save all
# the character attributes since we will want to force default
# character size, orientation, etc.
ca = (GKT_CELLARRAY(g_kt) != 0)
pr = false
if ( ca ) {
xres = real(g_xres)
yres = real(g_yres)
pr = (GKT_PIXREP(g_kt) != 0)
} else {
charwidth = real(GKT_CHARWIDTH(g_kt,1))*TSIZE
charheight = real(GKT_CHARHEIGHT(g_kt,1))*TSIZE
xres = real(GKI_MAXNDC)/ charwidth
yres = real(GKI_MAXNDC)/ charheight
z_scale = 1.0 / sqrt ( real(max(NSYMBOL, GKT_ZRES(g_kt))) )
tx = GKT_TXAP(g_kt)
call salloc(txsave, LEN_TX, TY_INT)
call savetx(txsave,tx)
}
# Input arguments (ax, ay) refer to corners of put cell array;
# we need corners of the corresponding device array.
x1 = ax1
x2 = ax2
y1 = ay1
y2 = ay2
call adjust(x1,x2,xres)
call adjust(y1,y2,yres)
# Find out how many real pixels we have to fill
px1 = real(x1)/(GKI_MAXNDC+1)
py1 = real(y1)/(GKI_MAXNDC+1)
px2 = real(x2)/(GKI_MAXNDC+1)
py2 = real(y2)/(GKI_MAXNDC+1)
nx = int( px2 * xres ) - int( px1 * xres ) + 1
ny = int( py2 * yres ) - int( py1 * yres ) + 1
if ( ny > 1)
delta_y = (real(y2) - real(y1))/ny
else {
delta_y = 0.
}
# If too many data points in input, set skip. If skip is close
# enough to one, set it to one.
# Set block replication factors - will be > 1.0 if too few input points.
# Cannot set to 1.0 if "close" enough, since, if > 1.0, we don't have
# enough points and so *some* have to be replicated.
if ( nc > nx ) {
skip_x = real(nc)/nx
if ( (skip_x - 1.0)*(nx-1) < 1.0 )
skip_x = 1.0
} else
blockx = real(nx)/nc
if ( nr > ny ) {
skip_y = real(nr)/ny
if ( (skip_y - 1.0)*(ny-1) < 1.0 )
skip_y = 1.0
} else
blocky = real(ny)/nr
# Allocate storage for a row of pixels. This is quite inefficient
# if the x dimension of the cell array is small, but the metacode
# won't be too much bigger (?).
# need nx+1 in case nx odd ... pixels() wants to pad output.
call salloc ( cell, nx+1, TY_SHORT)
Mems[cell + nx] = 0
# Initialize counters
sy = skip_y
bcy = blocky
startrow = 1
element = startrow
# See if we can use original data ... no massaging
# also set the initial value of the new_row flag, which tells
# if we have to rebuild the row data
# Note that if blockx > 1.0, skip_x must be 1.0, and vv
if ( (skip_x == 1.0) && (blockx == 1.0) ) {
use_orig = true
new_row = false
} else {
use_orig = false
new_row = true
}
# If device can pixel replicate, use that feature where we can
if( pr) {
if( (skip_x == 1.0) && ( int(blockx) == blockx) ) {
xrep = int(blockx)
use_orig = true
nx = nc
} else
xrep = 1
if( (skip_y == 1.0) && ( int(blocky) == blocky) ) {
yrep = int(blocky)
ny = 1
} else
yrep = 1
call pixel0(1,0,xrep,0,1,yrep)
}
# Do it
for ( i = 1; i <= ny ; i = i + 1) {
# Build the row data
if ( !use_orig && new_row ) {
if ( skip_x == 1.0) {
call blockit(m[element], Mems[cell], nx, blockx)
} else {
sx = skip_x
for ( j = 1; j <= nx; j = j + 1) {
Mems[cell+j-1] = m[element]
element = startrow + int(sx+0.5)
sx = sx + skip_x
}
}
if ( !ca )
if ( use_orig)
call fakepc(m[element], Mems[cell], nx, z_scale)
else
call fakepc(Mems[cell], Mems[cell], nx, z_scale)
}
# Send the row data.
if ( ca ) {
y = y1 + ((i - 1)*delta_y + 0.5)
if ( use_orig ) {
call pixels( px1, real(y)/GKI_MAXNDC,
nx, 1, m[element])
} else {
call pixels( px1, real(y)/GKI_MAXNDC, nx, 1, Mems[cell])
}
}
else
call gkt_text( x1, y1+(i-1)*int(charheight), Mems[cell], nx)
# Advance a row
element = startrow
if ( bcy <= real(i) ) {
startrow = 1 + nc * int(sy+0.5)
element = startrow
sy = sy + skip_y
bcy = bcy + blocky
new_row = true
} else {
new_row = false
}
}
# All done, restore text parameters and release storage
if ( !ca )
call restoretx (txsave,tx)
call sfree(sp)
end
# SAVETX --- save the current text parameters as pointed to by "txp"
# in the area pointed to by "savep", and then set the necessary
# defaults.
procedure savetx (savep, txp)
pointer savep, txp
include "gkt.com"
begin
# save old values
TX_UP(savep) = TX_UP(txp)
TX_SIZE(savep) = TX_SIZE(txp)
TX_PATH(savep) = TX_PATH(txp)
TX_HJUSTIFY(savep) = TX_HJUSTIFY(txp)
TX_VJUSTIFY(savep) = TX_VJUSTIFY(txp)
TX_FONT(savep) = TX_FONT(txp)
TX_COLOR(savep) = TX_COLOR(txp)
TX_SPACING(savep) = TX_SPACING(txp)
# set new (default) ones
TX_UP(txp) = 90
TX_SIZE(txp) = GKI_PACKREAL(TSIZE)
TX_PATH(txp) = GT_RIGHT
TX_HJUSTIFY(txp)= GT_LEFT
TX_VJUSTIFY(txp)= GT_BOTTOM
TX_FONT(txp) = GT_ROMAN
TX_COLOR(txp) = 1
TX_SPACING(txp) = 0.0
# Set the device attributes to undefined, forcing them to be reset
# when the next output instruction is executed.
GKT_TYPE(g_kt) = -1
GKT_WIDTH(g_kt) = -1
GKT_COLOR(g_kt) = -1
GKT_TXSIZE(g_kt) = -1
GKT_TXFONT(g_kt) = -1
end
# RESTORETX --- restore the text parameters from the save area
procedure restoretx (savep, txp)
pointer savep, txp
include "gkt.com"
begin
# Restore values
TX_UP(txp) = TX_UP(savep)
TX_SIZE(txp) = TX_SIZE(savep)
TX_PATH(txp) = TX_PATH(savep)
TX_HJUSTIFY(txp) = TX_HJUSTIFY(savep)
TX_VJUSTIFY(txp) = TX_VJUSTIFY(savep)
TX_FONT(txp) = TX_FONT(savep)
TX_COLOR(txp) = TX_COLOR(savep)
TX_SPACING(txp) = TX_SPACING(savep)
# Set the device attributes to undefined, forcing them to be reset
# when the next output instruction is executed.
GKT_TYPE(g_kt) = -1
GKT_WIDTH(g_kt) = -1
GKT_COLOR(g_kt) = -1
GKT_TXSIZE(g_kt) = -1
GKT_TXFONT(g_kt) = -1
end
# FAKEPC --- fake putcell output by using appropriately chosen text
# characters to make grey scale.
procedure fakepc (indata, outdata, nx, scale)
int nx # number of points in row
short indata[ARB] # input row data
short outdata[ARB] # output row data
real scale # intensity scaling factor
include "gkt.com"
int i
real temp
char cdata[NSYMBOL] # characters to represent intensity
data cdata /' ', '.', ':', '|', 'i', 'l', 'J', 'm', '#', 'S', 'B', EOS/
begin
#
for ( i = 1 ; i <= nx ; i = i + 1 ) {
temp = sqrt( max(0., real(indata[i])) )
outdata[i] = cdata[ min( NSYMBOL, int(NSYMBOL*scale*temp)+1 ) ]
}
end
# BLOCKIT -- block replication of data
procedure blockit( from, to, count, factor)
short from[ARB] # input data
short to[ARB] # output data
int count # number of output pixels
real factor # blocking factor
int i, j
real bc
begin
bc = factor
j = 1
for ( i = 1; i <= count ; i = i + 1 ) {
to[i] = from[j]
if ( bc <= real(i) ) {
j = j + 1
bc = bc + factor
}
}
end
# ADJUST -- round/truncate putcell array corners to device coordinates
# move up lower bound if it is above center point of device cell,
# move down upper bound if below. Don't allow bounds to go beyond
# resolution or below zero. Do not allow bounds to cross. Part of the
# assumptions behind all this is that putcells will be continguous and
# rows/columns must not be plotted twice.
procedure adjust ( lower, upper, res)
int lower, upper
real res
real factor
real low, up
begin
factor = res/(GKI_MAXNDC+1)
low = real(lower) * factor
up = real(upper) * factor
# if boundaries result in same row, return
if ( int(low) == int(up) )
return
# if low is in upper half of device pixel, round up
if ( (low - int(low)) >= 0.5 ) {
low = int(low) + 1
# don't go to or beyond upper bound
if ( low < up ) {
# ... 0.2 just for "rounding protection";
lower = (low + 0.2)/factor
# if now reference same cell, return
if ( int(low) == int(up) )
return
}
}
# if "up" in bottom half of pixel, drop down one. Note that
# due to two "==" tests above, upper will not drop below lower.
# 0.2 means drop partway down into pixel below; calling code will
# truncate.
if ( (up - int(up)) < 0.5 )
upper = real(int(up) - 0.2)/factor
end
|