1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <ctype.h>
include "stdgraph.h"
.help stg_encode
.nf _________________________________________________________________________
STG_ENCODE -- Table driven binary encoder/decoder. The encoder (which can
also decode) processes a format string, also referred to as a program, to
either encode an output string or decode an input string. Internally the
encoder operates in two modes, copy mode and execute mode. In copy mode
all format characters are copied to the output except the following special
characters:
' escape next character (literal)
% begin a formatted output string
( switch to execute mode (stack driven, RPN interpreter)
An ( appearing in the format string causes a mode switch to execute mode.
In execute mode characters are metacode instructions to be executed. An
unescaped ) causes reversion to copy mode. Parens may not be nested; an
( in execute mode is an instruction to push the binary value of ( on the
stack, and an ) in copy mode is copied to the output as a character. In
execute mode the following characters are recognized as special instructions.
All other characters are instructions too, telling the encoder to push the
ASCII value of the character on the stack.
' escape next character (recognized everywhere)
% formatted output
) revert to copy mode
#nnn push signed decimal integer number nnn
$ switch case construct
. pop number from stack and place in output string
, get next character from input string and push on stack
& modulus (similar to AND of low bits)
+ add (similar to OR)
- subtract (similar to AND)
* multiply (shift left if pwr of 2)
/ divide (shift right if pwr of 2)
< less than (0=false, 1=true)
> greater than (0=false, 1=true)
= equals (0=false, 1=true)
; branch if: <bool> <offset> ;. The ; is at offset zero.
0-9 push register
!N pop stack into register N
!! pop N from stack and output an N millisecond delay
The encoder communicates with the outside world via three general purpose
data structures.
registers 0-9 (integer only)
memory char array
program char array
The registers are used for parameter input and output as well as for storing
intermediate results. R 1-3 are used for input and output arguments. R 4-9
and R0 (R10) are reserved for use by the program. R11 is the i/o pointer into
encoder memory, used for character input and output. R12 should contain the
maximum memory address upon input. Memory may be used for anything but is
normally used only for the input string or output string. The program is the
format string.
Further documentation is given in the GIO reference manual.
.endhelp _____________________________________________________________________
define SZ_FORMAT 10 # max length printf format
define SZ_NUMSTR 10 # encoded numeric string
define R1 registers[1] # argument
define R2 registers[2] # argument
define R3 registers[3] # argument
define R4 registers[4] # scratch
define R5 registers[5] # scratch
define R6 registers[6] # scratch
define R7 registers[7] # scratch
define R8 registers[8] # scratch
define R9 registers[9] # scratch
define R0 registers[10] # scratch
define IOP registers[11] # i/o pointer into encoder memory
define TOP registers[12] # max memory location
# Inline macros.
define memory_overflow_ 1
define stack_underflow_ 2
define stack_overflow_ 3
define input {$1=memory[iop];iop=iop+1}
define output {memory[iop]=($1);iop=iop+1;if(iop>top)goto memory_overflow_}
define push {stack[sp]=($1);sp=sp+1}
define pop {sp=sp-1;$1=stack[sp]}
# STG_ENCODE -- Interpret a program, encoding values passed in registers into
# memory, or decoding memory into registers.
int procedure stg_encode (program, memory, registers)
char program[ARB] # program to be executed
char memory[ARB] # data space
int registers[NREGISTERS] # general purpose registers
int x, y, num, ch, status
int stack[LEN_STACK]
int sp, pc, iop, top, incase
common /sgecom/ pc, sp, iop, top, incase, stack
int sge_execute()
include "stdgraph.com"
begin
# TEK format, %t. This format deserves special treatment due to the
# prevalence of tektronix compatible graphics terminals.
if (program[1] == '%' && program[2] == 't') {
x = R1
y = R2
iop = IOP + 4
if (iop > top)
goto memory_overflow_
memory[iop-4] = g_hixy[y+1]
memory[iop-3] = g_loy[y+1]
memory[iop-2] = g_hixy[x+1]
memory[iop-1] = g_lox[x+1]
IOP = iop
if (program[3] == EOS)
return (OK)
}
# Process a general format string (as well as any chars following the
# %t format).
incase = NO
iop = IOP
top = TOP
pc = 1
sp = 1
for (ch=program[pc]; ch != EOS; ch=program[pc]) {
pc = pc + 1
if (ch == '%' && program[pc] != EOS) {
if (program[pc] == 't') {
# Tek format again.
pc = pc + 1
x = R1
y = R2
iop = iop + 4
if (iop > top)
goto memory_overflow_
memory[iop-4] = g_hixy[y+1]
memory[iop-3] = g_loy[y+1]
memory[iop-2] = g_hixy[x+1]
memory[iop-1] = g_lox[x+1]
} else {
# Extract a general format specification and use it to
# encode the number on top of the stack.
pop (num)
if (sp < 1) {
IOP = iop
return (stack_underflow_)
} else
call sge_printf (num, memory, iop, top, program, pc)
}
} else if (ch == '(' && program[pc] != EOS) {
# Switch to execute mode.
status = sge_execute (program, memory, registers)
if (status != OK)
return (status)
} else if (ch == '\'' && program[pc] != EOS) {
# Escape next character.
output (program[pc])
pc = pc + 1
} else {
# Copy an ordinary character to the output string.
output (ch)
}
}
IOP = iop
return (OK)
memory_overflow_
IOP = iop
return (memory_overflow_)
end
# SGE_EXECUTE -- Execute a metacode program stored in encoder memory starting
# at the location of the PC. The stack, program counter, i/o pointer, and
# registers are shared by the copy and execute mode procedures via common.
int procedure sge_execute (program, memory, registers)
char program[ARB] # program to be executed
char memory[ARB] # data space
int registers[NREGISTERS] # general purpose registers
int num, ch, a, b, neg, x, y
int stack[LEN_STACK]
int sp, pc, iop, top, incase, msec, npad, baud, envgeti(), btoi()
common /sgecom/ pc, sp, iop, top, incase, stack
include "stdgraph.com"
errchk envgeti
begin
# Execute successive single character instructions until either ) or
# EOS is seen. On a good host machine this case will be compiled as
# a vectored goto with a loop overhead of only a dozen or so machine
# instructions per loop.
for (ch=program[pc]; ch != EOS; ch=program[pc]) {
pc = pc + 1
switch (ch) {
case '\'':
# Escape next character (recognized everywhere).
ch = program[pc]
if (ch != EOS) {
# Push ASCII value of character.
push (ch)
pc = pc + 1
}
case '%':
if (program[pc] == 't') {
# Tek format again.
pc = pc + 1
x = R1
y = R2
iop = iop + 4
if (iop > top)
goto memory_overflow_
memory[iop-4] = g_hixy[y+1]
memory[iop-3] = g_loy[y+1]
memory[iop-2] = g_hixy[x+1]
memory[iop-1] = g_lox[x+1]
} else {
# Formatted output.
if (program[pc] != EOS) {
pop (num)
call sge_printf (num, memory, iop, top, program, pc)
} else
output (ch)
}
case ')':
# End interpreter mode.
return (OK)
case '#':
# Push signed decimal integer number.
neg = NO
if (program[pc] == '-') {
neg = YES
pc = pc + 1
}
num = 0
while (IS_DIGIT (program[pc])) {
num = num * 10 + TO_INTEG (program[pc])
pc = pc + 1
}
if (neg == YES)
push (-num)
else
push (num)
case '$':
# Switch case instruction.
if (incase == NO) {
# Pop the switch off the stack.
pop (num)
# Search for case number 'num'.
for (ch=program[pc]; ch != EOS; ch=program[pc]) {
if (ch == '$') {
# End of switch statement.
pc = pc + 1
incase = NO
break
} else if (program[pc+1] == '-') {
# Range of cases.
a = TO_INTEG (ch)
b = TO_INTEG (program[pc+2])
pc = pc + 3
if (a <= num && num <= b) {
incase = YES
break
}
} else if (ch == 'D' || TO_INTEG(ch) == num) {
# Default or requested case.
pc = pc + 1
incase = YES
break
}
# Advance to the next case. Leave pc pointing to the
# N of case $N.
if (ch != '$' && incase == NO) {
while (program[pc] != EOS && program[pc] != '$')
pc = pc + 1
if (program[pc] == '$')
pc = pc + 1
}
}
} else {
# $ encountered delimiting a case. Search forward for
# $$ or EOS.
if (program[pc] != '$')
for (ch=program[pc]; ch != EOS; ch=program[pc]) {
pc = pc + 1
if (ch == '$' && program[pc] == '$')
break
}
if (program[pc] == '$')
pc = pc + 1
incase = NO
}
case '.':
# Pop number from stack and place in output string as a
# binary character.
pop (num)
output (num)
case ',':
# Get next character from input string and push on stack.
input (num)
push (num)
case '&':
# Modulus (similar to AND of low bits).
pop (b)
pop (a)
push (mod (a, b))
case '+':
# Add (similar to OR).
pop (b)
pop (a)
push (a + b)
case '-':
# Subtract (similar to AND).
pop (b)
pop (a)
push (a - b)
case '*':
# Multiply (shift left if pwr of 2).
pop (b)
pop (a)
push (a * b)
case '/':
# Divide (shift right if pwr of 2).
pop (b)
pop (a)
push (a / b)
case '<':
# Less than (0=false, 1=true).
pop (b)
pop (a)
push (btoi (a < b))
case '>':
# Greater than (0=false, 1=true).
pop (b)
pop (a)
push (btoi (a > b))
case '=':
# Equals (0=false, 1=true).
pop (b)
pop (a)
push (btoi (a == b))
case ';':
# If 2nd value on stack is true add 1st value on stack to PC.
# Example: "12<#-8;". The ; is at offset zero.
pop (a)
pop (b)
if (b != 0)
pc = pc - 1 + a
case '0':
# Push contents of register 0 (10).
push (R0)
case '1':
# Push contents of register 1.
push (R1)
case '2':
# Push contents of register 2.
push (R2)
case '3':
# Push contents of register 3.
push (R3)
case '4':
# Push contents of register 4.
push (R4)
case '5':
# Push contents of register 5.
push (R5)
case '6':
# Push contents of register 6.
push (R6)
case '7':
# Push contents of register 7.
push (R7)
case '8':
# Push contents of register 8.
push (R8)
case '9':
# Push contents of register 9.
push (R9)
case '!':
if (program[pc] == '!') {
# !!: Pop stack and generate delay.
pc = pc + 1
pop (msec)
iferr (baud = envgeti ("ttybaud"))
baud = 9600
npad = real(msec) * (real(baud) / 8. / 1000.)
while (npad > 0) {
output (PADCHAR)
npad = npad - 1
}
} else {
# !N: Pop stack into register N.
num = TO_INTEG (program[pc])
if (num >= 0 && num <= 9) {
if (num == 0)
num = 10
pop (registers[num])
pc = pc + 1
} else
output (ch)
}
default:
# Push ASCII value of character.
push (ch)
}
if (sp <= 0)
return (stack_underflow_)
if (sp > LEN_STACK)
return (stack_overflow_)
}
return (OK)
memory_overflow_
return (memory_overflow_)
end
# SGE_PRINTF -- Process a %.. format specification. The number to be encoded
# has already been popped from the stack into the first argument. The encoded
# number is returned in memory at IOP, leaving IOP positioned to the first
# char following the encoded number. The format used to encode the number is
# extracted from the program starting at PC. PC is left pointing to the first
# character following the format.
procedure sge_printf (number, memory, iop, top, program, pc)
int number # number to be encoded
char memory[top] # output buffer
int iop # index of first char to be written (in/out)
int top # size of output buffer
char program[ARB] # contains printf format string
int pc # index of first char of format string (in/out)
char format[SZ_FORMAT]
char numstr[SZ_NUMSTR]
int op, ch, junk
int gstrcpy(), itoc()
begin
# Extract format %w.dC, a string of digits, -, or ., delimited by a
# letter. The format %w.dr is followed by a single character which
# must also be included in the format string.
format[1] = '%'
op = 2
for (ch=program[pc]; ch != EOS; ch=program[pc]) {
pc = pc + 1
format[op] = ch
op = op + 1
if (IS_LOWER(ch)) {
if (ch == 'r' && program[pc] != EOS) {
# Radix digit follows %r.
format[op] = program[pc]
op = op + 1
pc = pc + 1
}
break
}
}
format[op] = EOS
# Encode the number using the extracted format string. The case of
# a simple decimal encoding is optimized.
if (format[2] == 'd')
junk = itoc (number, numstr, SZ_NUMSTR)
else {
iferr {
call sprintf (numstr, SZ_NUMSTR, format)
call pargi (number)
} then
numstr[1] = EOS
}
# Move the encoded number to encoder memory, advancing the i/o
# pointer and taking care not to overrun memory. Leave the iop
# pointing AT, not after, the EOS output by gstrcpy.
iop = iop + gstrcpy (numstr, memory[iop], top - iop + 1)
end
|