aboutsummaryrefslogtreecommitdiff
path: root/sys/mwcs/wfgls.x
blob: 942cfdd10d4c390c32795b0a1fb0cb6881dd71e6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include	<math.h>
include	"mwcs.h"

.help WFGLS
.nf -------------------------------------------------------------------------
WFGLS -- WCS function driver for the Sanson-Flamsteed sinusoidal projection.

Driver routines:

	FN_INIT		    wf_gls_init (fc, dir)
	FN_DESTROY			(none)
	FN_FWD		     wf_gls_fwd (fc, v1, v2)
	FN_INV		     wf_gls_inv (fc, v1, v2)

.endhelp --------------------------------------------------------------------

# Driver specific fields of function call (FC) descriptor.
define	FC_IRA		Memi[$1+FCU]		     # RA axis (1 or 2)
define	FC_IDEC		Memi[$1+FCU+1]		     # DEC axis (1 or 2)
define  FC_NATRA        Memd[P2D($1+FCU+2)]          # RA of native pole (rads)
define  FC_NATDEC       Memd[P2D($1+FCU+4)]          # DEC of native pole (rads)
define  FC_LONGP        Memd[P2D($1+FCU+6)]          # LONGPOLE (rads)
define  FC_COSDEC       Memd[P2D($1+FCU+8)]          # cosine (NATDEC)
define  FC_SINDEC       Memd[P2D($1+FCU+10)]         # sine (NATDEC)
define  FC_SPHTOL       Memd[P2D($1+FCU+12)]         # trig tolerance
define	FC_RODEG	Memd[P2D($1+FCU+14)]	     # RO (degs)
define	FC_RECRODEG	Memd[P2D($1+FCU+16)]	     # 1 / RO (degs)
define	FC_BADCVAL	Memd[P2D($1+FCU+18)]	     # bad coordinate value
define	FC_W		Memd[P2D($1+FCU+20)+($2)-1]  # CRVAL axis (1 and 2)


# WF_GLS_INIT -- Initialize the forward or inverse Sanson-Flamsteed global
# sinusoidal transform. Initialization for this transformation consists of,
# determining which axis is RA / LON and which is DEC / LAT, reading in the 
# ative longitudend latitude of the pole in celestial coordinates LONGPOLE
# and LATPOLE from the attribute list, computing the celestial longitude and
# colatitude of the native pole, precomputing the Euler angles and various
# intermediary functions of the reference point, reading in the projection
# parameter RO from the attribute list, and precomputing the various required
# intermediate quantities. If LONGPOLE is undefined then a value of 180.0
# degrees is assumed if the native latitude of the reference point is less
# than 0, otherwise 0 degrees is assumed. If LATPOLE is undefined then the
# most northerly of the two possible solutions for the latitude of the
# native pole is chosen. If RO is undefined a value of 180.0 / PI is assumed.
# In order to determine the axis order, the parameter "axtype={ra|dec}
# {xlon|xlat}" must have been set in the attribute list for the function.
# The LONGPOLE, LATPOLE,  and RO parameters may be set in either or both of
# the axes attribute lists, but the value in the RA axis attribute list
# takes precedence. 

procedure wf_gls_init (fc, dir)

pointer	fc			#I pointer to FC descriptor
int	dir			#I direction of transform

int	i
double  dec, latpole, theta0, clat0, slat0, cphip, sphip, cthe0, sthe0, x, y, z
double  u, v, latp1, latp2, latp, maxlat, tol
pointer	sp, atvalue, ct, mw, wp, wv
int	ctod()
data    tol/1.0d-10/
errchk	wf_decaxis(), mw_gwattrs()

begin
	# Allocate space for the attribute string.
	call smark (sp)
	call salloc (atvalue, SZ_LINE, TY_CHAR)

	# Get the required mwcs pointers.
	ct = FC_CT(fc)
	mw = CT_MW(ct)
	wp = FC_WCS(fc)

	# Determine which is the DEC axis, and hence the axis order.
	call wf_decaxis (fc, FC_IRA(fc), FC_IDEC(fc))

	# Get the value of W for each axis, i.e. the world coordinates at
	# the reference point.

	wv = MI_DBUF(mw) + WCS_W(wp) - 1
	do i = 1, 2
	    FC_W(fc,i) = Memd[wv+CT_AXIS(ct,FC_AXIS(fc,i))-1]

        # Determine the native longitude and latitude of the pole of the
        # celestial coordinate system corresponding to the FITS keywords
        # LONGPOLE and LATPOLE. LONGPOLE has no default but will be set
        # to 180 or 0 depending on the value of the declination of the
        # reference point. LATPOLE has no default but will be set depending
        # on the values of LONGPOLE and the reference declination.

        iferr {
            call mw_gwattrs (mw, FC_IRA(fc), "longpole", Memc[atvalue], SZ_LINE)
        } then {
            iferr {
                call mw_gwattrs (mw, FC_IDEC(fc), "longpole", Memc[atvalue],
                    SZ_LINE)
            } then {
                FC_LONGP(fc) = INDEFD
            } else {
                i = 1
                if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0)
                    FC_LONGP(fc) = INDEFD
            }
        } else {
            i = 1
            if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0)
                FC_LONGP(fc) = INDEFD
        }

	iferr {
            call mw_gwattrs (mw, FC_IRA(fc), "latpole", Memc[atvalue], SZ_LINE)
        } then {
            iferr {
                call mw_gwattrs (mw, FC_IDEC(fc), "latpole", Memc[atvalue],
                    SZ_LINE)
            } then {
                latpole = INDEFD
            } else {
                i = 1
                if (ctod (Memc[atvalue], i, latpole) <= 0)
                    latpole = INDEFD
            }
        } else {
            i = 1
            if (ctod (Memc[atvalue], i, latpole) <= 0)
                latpole = INDEFD
        }

        # Fetch the RO projection parameter which is the radius of the
        # generating sphere for the projection. If RO is absent which
        # is the usual case set it to 180 / PI. Search both axes for
        # this quantity.

        iferr {
            call mw_gwattrs (mw, FC_IRA(fc), "ro", Memc[atvalue], SZ_LINE)
        } then {
            iferr {
                call mw_gwattrs (mw, FC_IDEC(fc), "ro", Memc[atvalue],
                    SZ_LINE)
            } then {
                FC_RODEG(fc) = 180.0d0 / DPI
            } else {
                i = 1
                if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0)
                    FC_RODEG(fc) = 180.0d0 / DPI
            }
        } else {
            i = 1
            if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0)
                FC_RODEG(fc) = 180.0d0 / DPI
        }

        # Compute the native longitude of the celestial pole.
        dec = DDEGTORAD(FC_W(fc,FC_IDEC(fc)))
        theta0 = 0.0d0
        if (IS_INDEFD(FC_LONGP(fc))) {
            if (dec < theta0)
                FC_LONGP(fc) = DPI
            else
                FC_LONGP(fc) = 0.0d0
        } else
            FC_LONGP(fc) = DDEGTORAD(FC_LONGP(fc))

       # Compute the celestial longitude and latitude of the native pole.
        clat0 = cos (dec)
        slat0 = sin (dec)
        cphip = cos (FC_LONGP(fc))
        sphip = sin (FC_LONGP(fc))
        cthe0 = cos (theta0)
        sthe0 = sin (theta0)

        x = cthe0 * cphip
        y = sthe0
        z = sqrt (x * x + y * y)

        # The latitude of the native pole is determined by LATPOLE in this
        # case.
        if (z == 0.0d0) {

            if (slat0 != 0.0d0)
                call error (0, "WF_GLS_INIT: Invalid projection parameters")
            if (IS_INDEFD(latpole))
                latp = 999.0d0
            else
                latp = DDEGTORAD(latpole)

        } else {
            if (abs (slat0 / z) > 1.0d0)
                call error (0, "WF_GLS_INIT: Invalid projection parameters")

            u = atan2 (y, x)
            v = acos (slat0 / z)
            latp1 = u + v
            if (latp1 > DPI)
                latp1 = latp1 - DTWOPI
            else if (latp1 < -DPI)
                latp1 = latp1 + DTWOPI

            latp2 = u - v
            if (latp2 > DPI)
                latp2 = latp2 - DTWOPI
            else if (latp2 < -DPI)
                latp2 = latp2 + DTWOPI

            if (IS_INDEFD(latpole))
                maxlat = 999.0d0
            else
                maxlat = DDEGTORAD(latpole)
            if (abs (maxlat - latp1) < abs (maxlat - latp2)) {
                if (abs (latp1) < (DHALFPI + tol))
                    latp = latp1
                else
                    latp = latp2
            } else {
                if (abs (latp2) < (DHALFPI + tol))
                    latp = latp2
                else
                    latp = latp1
            }
        }
        FC_NATDEC(fc) = DHALFPI - latp

        z = cos (latp) * clat0
        if (abs(z) < tol) {

            # Celestial pole at the reference point.
            if (abs(clat0) < tol) {
                FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc)))
                FC_NATDEC(fc) = DHALFPI - theta0
            # Celestial pole at the native north pole.
            } else if (latp > 0.0d0) {
                FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc))) + FC_LONGP(fc) -
                    DPI
                FC_NATDEC(fc) = 0.0d0
            # Celestial pole at the native south pole.
            } else if (latp < 0.0d0) {
                FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc))) - FC_LONGP(fc)
                FC_NATDEC(fc) = DPI
            }

        } else {
            x = (sthe0 - sin (latp) * slat0) / z
            y = sphip * cthe0 / clat0
            if (x == 0.0d0 && y == 0.0d0)
                call error (0, "WF_GLS_INIT: Invalid projection parameters")
            FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc))) - atan2 (y,x)
        }

        if (FC_W(fc,FC_IRA(fc)) >= 0.0d0) {
            if (FC_NATRA(fc) < 0.0d0)
                FC_NATRA(fc) = FC_NATRA(fc) + DTWOPI
        } else {
            if (FC_NATRA(fc) > 0.0d0)
                FC_NATRA(fc) = FC_NATRA(fc) - DTWOPI
        }
        FC_COSDEC(fc) = cos (FC_NATDEC(fc))
        FC_SINDEC(fc) = sin (FC_NATDEC(fc))

        # Check for ill-conditioned parameters.
        if (abs(latp) > (DHALFPI+tol))
            call error (0, "WF_GLS_INIT: Invalid projection parameters")

	# Compute the required intermediate quantities.
	FC_RECRODEG(fc) = 1.0d0 / FC_RODEG(fc)

        # Set the bad coordinate value.
        FC_SPHTOL(fc) = 1.0d-5

	# Set the bad coordinate value.
	FC_BADCVAL(fc) = INDEFD

	# Free working space.
	call sfree (sp)
end


# WF_GLS_FWD -- Forward transform (physical to world) for the Sanson-Flamsteed
# global sinusoidal projection.

procedure wf_gls_fwd (fc, p, w)

pointer	fc			#I pointer to FC descriptor
double	p[2]			#I physical coordinates (x, y)
double	w[2]			#O world coordinates (ra, dec)

int	ira, idec
double	x, y, wconst, phi, theta, costhe, sinthe, dphi, cosphi, sinphi
double	ra, dec, dlng, z

begin
	# Get the axis numbers.
	ira = FC_IRA(fc)
	idec = FC_IDEC(fc)

	# Compute native spherical coordinates PHI and THETA in degrees from
	# the projected coordinates. This is the projection part of the
	# computation.

	x = p[ira]
	y = p[idec]

	# Compute PHI
	wconst = cos (y * FC_RECRODEG(fc))
	if (wconst == 0.0d0)
	    phi = 0.0d0
	else
	    phi = x * FC_RECRODEG(fc) / wconst

	# Compute THETA.
	theta = y * FC_RECRODEG(fc)

	# Compute the celestial coordinates RA and DEC from the native
	# coordinates PHI and THETA. This is the spherical geometry part
	# of the computation.

	costhe = cos (theta)
	sinthe = sin (theta)
	dphi = phi - FC_LONGP(fc)
	cosphi = cos (dphi)
	sinphi = sin (dphi)

	# Compute the RA.
	x = sinthe * FC_SINDEC(fc) - costhe * FC_COSDEC(fc) * cosphi
        if (abs (x) < FC_SPHTOL(fc))
            x = -cos (theta + FC_NATDEC(fc)) + costhe * FC_COSDEC(fc) *
                (1.0d0 - cosphi)
	y = -costhe * sinphi
	if (x != 0.0d0 || y != 0.0d0) {
	    dlng = atan2 (y, x)
	} else {
	    dlng = dphi + DPI
	}
	ra = DRADTODEG(FC_NATRA(fc) + dlng)

        # Normalize the RA.
        if (FC_NATRA(fc) >= 0.0d0) {
            if (ra < 0.0d0)
                ra = ra + 360.0d0
        } else {
            if (ra > 0.0d0)
                ra = ra - 360.0d0
        }
	if (ra > 360.0d0)
	    ra = ra - 360.0d0
	else if (ra < -360.0d0)
	    ra = ra + 360.0d0

        # Compute the DEC.
        if (mod (dphi, DPI) == 0.0d0) {
            dec = DRADTODEG(theta + cosphi * FC_NATDEC(fc))
            if (dec > 90.0d0)
                dec = 180.0d0 - dec
            if (dec < -90.0d0)
                dec = -180.0d0 - dec
        } else {
            z = sinthe * FC_COSDEC(fc) + costhe * FC_SINDEC(fc) * cosphi
            if (abs(z) > 0.99d0) {
                if (z >= 0.0d0)
                    dec = DRADTODEG(acos (sqrt(x * x + y * y)))
                else
                    dec = DRADTODEG(-acos (sqrt(x * x + y * y)))
            } else
                dec = DRADTODEG(asin (z))
        }

	# Store the results.
	w[ira]  = ra
	w[idec] = dec
end


# WF_GLS_INV -- Inverse transform (world to physical) for the Sanson-Flamsteed
# global sinusoidal projection.

procedure wf_gls_inv (fc, w, p)

pointer	fc			#I pointer to FC descriptor
double	w[2]			#I input world (RA, DEC) coordinates
double	p[2]			#I output physical coordinates

int	ira, idec
double	ra, dec, cosdec, sindec, cosra, sinra, x, y, z, phi, theta, dphi

begin
	# Get the axes numbers.
	ira = FC_IRA(fc)
	idec = FC_IDEC(fc)

	# Compute the transformation from celestial coordinates RA and
	# DEC to native coordinates PHI and THETA. This is the spherical
	# geometry part of the transformation.

	ra  = DDEGTORAD (w[ira]) - FC_NATRA(fc)
	dec = DDEGTORAD (w[idec])
	cosra = cos (ra)
	sinra = sin (ra)
	cosdec = cos (dec)
	sindec = sin (dec)

	# Compute PHI.
	x = sindec * FC_SINDEC(fc) - cosdec * FC_COSDEC(fc) * cosra
        if (abs(x) < FC_SPHTOL(fc))
            x = -cos (dec + FC_NATDEC(fc)) + cosdec * FC_COSDEC(fc) *
                (1.0d0 - cosra)
	y = -cosdec * sinra
	if (x != 0.0d0 || y != 0.0d0)
	    dphi = atan2 (y, x)
	else
	    dphi = ra - DPI
	phi = FC_LONGP(fc) + dphi
	if (phi > DPI)
	    phi = phi - DTWOPI
	else if (phi < -DPI)
	    phi = phi + DTWOPI

	# Compute THETA.
        if (mod (ra, DPI) == 0.0) {
            theta = dec + cosra * FC_NATDEC(fc)
            if (theta > DHALFPI)
                theta = DPI - theta
            if (theta < -DHALFPI)
                theta = -DPI - theta
        } else {
            z = sindec * FC_COSDEC(fc) + cosdec * FC_SINDEC(fc) * cosra
            if (abs (z) > 0.99d0) {
                if (z >= 0.0)
                    theta = acos (sqrt(x * x + y * y))
                else
                    theta = -acos (sqrt(x * x + y * y))
            } else
                theta = asin (z)
        }

	# Compute the transformation from native coordinates PHI and THETA
	# to projected coordinates X and Y.

	p[ira] = FC_RODEG(fc) * phi * cos (theta)
	p[idec] = FC_RODEG(fc) * theta

end