1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <imhdr.h>
include "mwcs.h"
.help WFMSPEC
.nf -------------------------------------------------------------------------
WFMSPEC -- WCS function driver for MULTISPEC spectral format.
The dispersion coordinate is along image lines and each line has independent
linear or nonlinear dispersion coordinates. The dispersion coordinates are
defined by specn attributes where n is the physical line number. The format
of the attributes is:
ap beam dtype w1 dw nw z aplow aphigh coeffs...
where ap is the aperture number (unique within an image), beam is a beam
number (not used by the driver), dtype is the dispersion type with values
0 = linear dispersion
1 = log linear dispersion
2 = nonlinear dispersion
w1 is the wavelength of the first physical pixel, dw is the average
increment per pixel between the first and last pixel, nw is the number of
pixels, z is a redshift factor to be applied to the dispersion coordinates,
aplow and aphigh are aperture limits defining the origin of the spectra (not
used by the driver), and coeffs are the nonlinear dispersion coefficients.
The nonlinear dispersion function coefficients may describe several function
types; chebyshev polynomial, legendre polynomial, linear spline, cubic
spline, linear interpolation in a pixel coordinate array, and linear
interpolation in a sampled array.
The axes and dispersion parameters are in terms of the physical image. The
aperture number is used for the world coordinate of the line coordinate.
Coordinates outside the valid range are mapped to nearest valid world
coordinate. In application this would give a correct world coordinate graph
for a general WCS blind graphics task (especially if all invalid pixels have
the same value as the last valid pixel).
Driver routines:
FN_INIT wf_msp_init (fc, dir)
FN_DESTROY wf_msp_destroy (fc)
FN_FWD wf_msp_fwd (fc, v1, v2)
FN_INV wf_msp_inv (fc, v1, v2)
In addition the nonlinear dispersion functions use the following routines:
wf_msp_coeff Convert the attribute string to a coefficient array
wf_msp_eval Evaluate the function (P->W)
wf_msp_evali Evaluate the inverse function (W->P)
.endhelp --------------------------------------------------------------------
# Driver specific fields of function call (FC) descriptor.
define FC_NAPS Memi[$1+FCU] # number of apertures
define FC_APS Memi[$1+FCU+1] # pointer to indep coords
define FC_DTYPE Memi[$1+FCU+2] # pointer to dispersion type
define FC_CRVAL Memi[$1+FCU+3] # pointer to linear origins
define FC_CDELT Memi[$1+FCU+4] # pointer to linear intervals
define FC_NPTS Memi[$1+FCU+5] # pointer to number of points
define FC_Z Memi[$1+FCU+6] # pointer to doppler corrections
define FC_COEFF Memi[$1+FCU+7] # pointer to nonlinear coeffs
define FC_X Memi[$1+FCU+8] # pointer to last phys. coord.
define FC_DYDX Memi[$1+FCU+9] # pointer to last deriv.
define FC_DIR Memi[$1+FCU+10] # direction of transform
# Function types.
define CHEBYSHEV 1 # CURFIT Chebyshev polynomial
define LEGENDRE 2 # CURFIT Legendre polynomial
define SPLINE3 3 # CURFIT cubic spline
define SPLINE1 4 # CURFIT linear spline
define PIXEL 5 # pixel coordinate array
define SAMPLE 6 # sampled coordinates
# Dispersion types.
define LINEAR 0 # linear
define LOG 1 # log linear
define NONLINEAR 2 # nonlinear
# Iterative inversion parameters.
define NALLOC 10 # size of allocation increments
define NIT 10 # max interations in determining inverse
define DX 0.0001 # accuracy limit in pixels for inverse
# Size limiting definitions.
define DEF_SZATVAL 2048 # dynamically resized if overflow
# WF_MSP_INIT -- Initialize the function call descriptor for the indicated
# type of transform (forward or inverse).
procedure wf_msp_init (fc, dir)
pointer fc #I pointer to FC descriptor
int dir #I type of transformation
pointer ct, mw
int sz_atval, naps, ip, i
pointer sp, atkey, atval, aps, dtype, crval, cdelt, npts, z, coeff
int strlen(), ctoi(), ctod()
double x, dval, wf_msp_eval()
errchk malloc, realloc
begin
# Get pointers.
ct = FC_CT(fc)
mw = CT_MW(ct)
# Check axes.
if (FC_NAXES(fc) != 2 || CT_AXIS(ct,1) != 1 || CT_AXIS(ct,2) != 2)
call error (1, "WFMSPEC: Wrong axes")
# Get spectrum information.
call smark (sp)
sz_atval = DEF_SZATVAL
call malloc (atval, sz_atval, TY_CHAR)
call salloc (atkey, SZ_ATNAME, TY_CHAR)
for (naps=0; ; naps=naps+1) {
call sprintf (Memc[atkey], SZ_ATNAME, "spec%d")
call pargi (naps+1)
iferr (call mw_gwattrs (mw, 2, Memc[atkey], Memc[atval], sz_atval))
break
while (strlen (Memc[atval]) == sz_atval) {
sz_atval = 2 * sz_atval
call realloc (atval, sz_atval, TY_CHAR)
call mw_gwattrs (mw, 2, Memc[atkey], Memc[atval], sz_atval)
}
if (naps == 0) {
call malloc (aps, NALLOC, TY_INT)
call malloc (dtype, NALLOC, TY_INT)
call malloc (crval, NALLOC, TY_DOUBLE)
call malloc (cdelt, NALLOC, TY_DOUBLE)
call malloc (npts, NALLOC, TY_INT)
call malloc (z, NALLOC, TY_DOUBLE)
call malloc (coeff, NALLOC, TY_POINTER)
} else if (mod (naps, NALLOC) == 0) {
call realloc (aps, naps+NALLOC, TY_INT)
call realloc (dtype, naps+NALLOC, TY_INT)
call realloc (crval, naps+NALLOC, TY_DOUBLE)
call realloc (cdelt, naps+NALLOC, TY_DOUBLE)
call realloc (npts, naps+NALLOC, TY_INT)
call realloc (z, naps+NALLOC, TY_DOUBLE)
call realloc (coeff, naps+NALLOC, TY_POINTER)
}
# Linear dispersion function.
ip = 1
if (ctoi (Memc[atval], ip, Memi[aps+naps]) <= 0)
next
if (ctoi (Memc[atval], ip, Memi[dtype+naps]) <= 0)
next
if (ctoi (Memc[atval], ip, Memi[dtype+naps]) <= 0)
next
if (ctod (Memc[atval], ip, Memd[crval+naps]) <= 0)
next
if (ctod (Memc[atval], ip, Memd[cdelt+naps]) <= 0)
next
if (ctoi (Memc[atval], ip, Memi[npts+naps]) <= 0)
next
if (ctod (Memc[atval], ip, Memd[z+naps]) <= 0)
next
if (ctod (Memc[atval], ip, dval) <= 0)
next
if (ctod (Memc[atval], ip, dval) <= 0)
next
Memd[z+naps] = Memd[z+naps] + 1
# Set nonlinear dispersion function.
if (Memi[dtype+naps] == NONLINEAR)
call wf_msp_coeff (Memc[atval+ip], Memi[coeff+naps],
double (0.5), double (Memi[npts+naps]+0.5))
}
if (naps <= 0)
call error (2, "WFMSPEC: No aperture information")
call realloc (aps, naps, TY_INT)
call realloc (dtype, naps, TY_INT)
call realloc (crval, naps, TY_DOUBLE)
call realloc (cdelt, naps, TY_DOUBLE)
call realloc (npts, naps, TY_INT)
call realloc (z, naps, TY_DOUBLE)
call realloc (coeff, naps, TY_POINTER)
FC_NAPS(fc) = naps
FC_APS(fc) = aps
FC_DTYPE(fc) = dtype
FC_CRVAL(fc) = crval
FC_CDELT(fc) = cdelt
FC_NPTS(fc) = npts
FC_Z(fc) = z
FC_COEFF(fc) = coeff
FC_DIR(fc) = dir
# Setup inverse parameters if needed.
# The parameters make the interative inversion more efficient
# when the inverse transformation is evaluated sequentially.
if (dir == INVERSE) {
call malloc (crval, naps, TY_DOUBLE)
call malloc (cdelt, naps, TY_DOUBLE)
do i = 0, naps-1 {
if (Memi[FC_NPTS(fc)+i] == 0)
next
if (Memi[FC_DTYPE(fc)+i] == NONLINEAR) {
coeff = Memi[FC_COEFF(fc)+i]
x = Memi[FC_NPTS(fc)+i]
Memd[crval+i] = x
Memd[cdelt+i] = wf_msp_eval (Memd[coeff], x) -
wf_msp_eval (Memd[coeff], x - 1)
}
}
FC_X(fc) = crval
FC_DYDX(fc) = cdelt
} else {
FC_X(fc) = NULL
FC_DYDX(fc) = NULL
}
call mfree (atval, TY_CHAR)
call sfree (sp)
end
# WF_MSP_DESTROY -- Free function driver descriptor.
procedure wf_msp_destroy (fc)
pointer fc #I pointer to FC descriptor
int i
begin
do i = 1, FC_NAPS(fc)
if (Memi[FC_DTYPE(fc)+i-1] == NONLINEAR)
call mfree (Memi[FC_COEFF(fc)+i-1], TY_DOUBLE)
call mfree (FC_APS(fc), TY_INT)
call mfree (FC_DTYPE(fc), TY_INT)
call mfree (FC_CRVAL(fc), TY_DOUBLE)
call mfree (FC_CDELT(fc), TY_DOUBLE)
call mfree (FC_NPTS(fc), TY_INT)
call mfree (FC_Z(fc), TY_DOUBLE)
call mfree (FC_COEFF(fc), TY_POINTER)
call mfree (FC_X(fc), TY_DOUBLE)
call mfree (FC_DYDX(fc), TY_DOUBLE)
end
# WF_MSP_FWD -- Evaluate P -> W (physical to world transformation).
procedure wf_msp_fwd (fc, in, out)
pointer fc #I pointer to FC descriptor
double in[2] #I point to sample WCS at
double out[2] #O value of WCS at that point
int i
pointer coeff
double din, wf_msp_eval()
begin
i = nint (in[2]) - 1
if (i < 0 || i >= FC_NAPS(fc))
call error (3, "WFMSPEC: Coordinate out of bounds")
if (Memi[FC_NPTS(fc)+i] == 0)
call error (4, "WFMSPEC: No dispersion function")
if (Memi[FC_DTYPE(fc)+i] == NONLINEAR) {
coeff = Memi[FC_COEFF(fc)+i]
out[2] = Memi[FC_APS(fc)+i]
out[1] = wf_msp_eval (Memd[coeff], in[1])
} else {
din = max (0.5D0, min (double (Memi[FC_NPTS(fc)+i]+0.5), in[1]))
out[2] = Memi[FC_APS(fc)+i]
out[1] = Memd[FC_CRVAL(fc)+i] + Memd[FC_CDELT(fc)+i] * (din - 1)
if (Memi[FC_DTYPE(fc)+i] == LOG)
out[1] = 10. ** out[1]
}
out[1] = out[1] / Memd[FC_Z(fc)+i]
end
# WF_MSP_INV -- Evaluate W -> P (world to physical transformation).
procedure wf_msp_inv (fc, in, out)
pointer fc #I pointer to FC descriptor
double in[2] #I point to sample WCS at
double out[2] #O value of WCS at that point
int i
pointer coeff
double din, dinmin
double wf_msp_evali()
begin
out[2] = 1
dinmin = abs (in[2] - Memi[FC_APS(fc)])
do i = 1, FC_NAPS(fc)-1 {
din = abs (in[2] - Memi[FC_APS(fc)+i])
if (din < dinmin) {
out[2] = i + 1
dinmin = din
}
}
i = nint (out[2]) - 1
if (i < 0 || i >= FC_NAPS(fc))
call error (5, "WFMSPEC: Coordinate out of bounds")
if (Memi[FC_NPTS(fc)+i] == 0)
call error (6, "WFMSPEC: No dispersion function")
din = in[1] * Memd[FC_Z(fc)+i]
if (Memi[FC_DTYPE(fc)+i] == NONLINEAR) {
coeff = Memi[FC_COEFF(fc)+i]
out[1] = wf_msp_evali (Memd[coeff], din, Memd[FC_X(fc)+i],
Memd[FC_DYDX(fc)+i])
} else {
if (Memi[FC_DTYPE(fc)+i] == LOG)
din = log10 (din)
out[1] = (din-Memd[FC_CRVAL(fc)+i]) / Memd[FC_CDELT(fc)+i] + 1
out[1] = max (0.5D0, min (double(Memi[FC_NPTS(fc)+i]+0.5), out[1]))
}
end
# WF_MSP_COEFF -- Initialize nonlinear coefficient array.
procedure wf_msp_coeff (atval, coeff, xmin, xmax)
char atval[ARB] #I attribute string
pointer coeff #O coefficient array
double xmin, xmax #I x limits
double dval, temp
int ncoeff, type, order, ip, i
errchk malloc, realloc
double wf_msp_eval()
int ctod()
begin
coeff = NULL
ncoeff = 5
ip = 1
while (ctod (atval, ip, dval) > 0) {
if (coeff == NULL)
call malloc (coeff, NALLOC, TY_DOUBLE)
else if (mod (ncoeff, NALLOC) == 0)
call realloc (coeff, ncoeff+NALLOC, TY_DOUBLE)
Memd[coeff+ncoeff] = dval
ncoeff = ncoeff + 1
}
if (coeff == NULL)
return
# Convert range elements to a more efficient form.
call realloc (coeff, ncoeff, TY_DOUBLE)
Memd[coeff] = ncoeff
i = 6
while (i < ncoeff) {
type = nint (Memd[coeff+i+1])
order = nint (Memd[coeff+i+2])
switch (type) {
case CHEBYSHEV, LEGENDRE:
dval = 2 / (Memd[coeff+i+4] - Memd[coeff+i+3])
Memd[coeff+i+3] = (Memd[coeff+i+4] + Memd[coeff+i+3]) / 2
Memd[coeff+i+4] = dval
i = i + 6 + order
case SPLINE3:
Memd[coeff+i+4] = nint (Memd[coeff+i+2]) /
(Memd[coeff+i+4] - Memd[coeff+i+3])
i = i + 9 + order
case SPLINE1:
Memd[coeff+i+4] = nint (Memd[coeff+i+2]) /
(Memd[coeff+i+4] - Memd[coeff+i+3])
i = i + 7 + order
case PIXEL:
i = i + 4 + order
case SAMPLE:
Memd[coeff+i+3] = i + 5
i = i + 5 + order
}
}
# Set function limits.
Memd[coeff+1] = xmin
Memd[coeff+2] = xmax
dval = wf_msp_eval (Memd[coeff], xmin)
temp = wf_msp_eval (Memd[coeff], xmax)
Memd[coeff+3] = min (dval, temp)
Memd[coeff+4] = max (dval, temp)
end
# WF_MSP_EVAL -- Evaluate nonlinear function.
double procedure wf_msp_eval (coeff, xin)
double coeff[ARB] #I coefficients
double xin #I physical coordinate for evaluation
int i, j, k, ncoeff, type, order
double xval, x, y, w, ysum, wsum, a, b, c
begin
ncoeff = nint (coeff[1])
xval = max (coeff[2], min (coeff[3], xin))
ysum = 0.
wsum = 0.
j = 6
while (j < ncoeff) {
type = nint (coeff[j+2])
order = nint (coeff[j+3])
y = coeff[j+1]
w = coeff[j]
switch (type) {
case CHEBYSHEV:
x = (xval - coeff[j+4]) * coeff[j+5]
y = y + coeff[j+6]
if (order > 1)
y = y + coeff[j+7] * x
if (order > 2) {
k = j + 8
a = 1
b = x
do i = 3, order {
c = 2 * x * b - a
y = y + coeff[k] * c
a = b
b = c
k = k + 1
}
}
j = j + 6 + order
case LEGENDRE:
x = (xval - coeff[j+4]) * coeff[j+5]
y = y + coeff[j+6]
if (order > 1)
y = y + coeff[j+7] * x
if (order > 2) {
k = j + 8
a = 1
b = x
do i = 3, order {
c = ((2 * i - 3) * x * b - (i - 2) * a) / (i - 1)
y = y + coeff[k] * c
a = b
b = c
k = k + 1
}
}
j = j + 6 + order
case SPLINE3:
x = (xval - coeff[j+4]) * coeff[j+5]
i = max (0, min (int (x), order-1))
k = j + 6 + i
b = x - i
a = 1 - b
c = a * a * a
y = y + c * coeff[k]
c = 1 + 3 * a * (1 + a * b)
y = y + c * coeff[k+1]
c = 1 + 3 * b * (1 + a * b)
y = y + c * coeff[k+2]
c = b * b * b
y = y + c * coeff[k+3]
j = j + 9 + order
case SPLINE1:
x = (xval - coeff[j+4]) * coeff[j+5]
i = max (0, min (int (x), order-1))
k = j + 6 + i
b = x - i
a = 1 - b
y = y + a * coeff[k] + b * coeff[k+1]
j = j + 7 + order
case PIXEL:
i = max (1, min (int (xval), order-1))
x = xval - i
y = y + (1 - x) * coeff[j+3+i] + x * coeff[j+4+i]
j = j + 4 + order
case SAMPLE:
i = nint (coeff[j+4])
for (k=j+2+order; i < k && xval > coeff[i+2]; i=i+2)
;
for (k=j+5; i > k && xval < coeff[i-2]; i=i-2)
;
coeff[j+4] = i
x = (xval - coeff[i]) / (coeff[i+2] - coeff[i])
y = y + (1 - x) * coeff[i+1] + x * coeff[i+3]
j = j + 5 + order
}
ysum = ysum + w * y
wsum = wsum + w
}
ysum = ysum / wsum
return (ysum)
end
# WF_MSP_EVALI -- Evaluate inverse of nonlinear function.
double procedure wf_msp_evali (coeff, y, x, dydx)
double coeff[ARB] #I function coefficients
double y #I world coord to invert
double x #U last physical coordinate
double dydx #U last coordinate derivative
int i
double xval, yval, y1, dx, dy
double wf_msp_eval()
bool fp_equald()
begin
yval = max (coeff[4], min (coeff[5], y))
dx = 0.
dy = 0.
do i = 1, NIT {
y1 = wf_msp_eval (coeff, x)
if (dx > 1.) {
if (x + 1 < coeff[3])
dy = wf_msp_eval (coeff, x+1.) - y1
else
dy = y1 - wf_msp_eval (coeff, x-1.)
} else if (dx < -1.) {
if (x - 1 > coeff[2])
dy = y1 - wf_msp_eval (coeff, x-1.)
else
dy = wf_msp_eval (coeff, x+1.) - y1
}
if (!fp_equald (dy, 0.0D0))
dydx = dy
dx = (yval - y1) / dydx
x = x + dx
x = max (coeff[2], min (coeff[3], x))
if (abs (dx) < DX)
break
}
if (i > NIT) {
xval = (coeff[2] + coeff[3]) / 2.
yval = abs (wf_msp_eval (coeff, xval) - y)
dx = (coeff[3] - coeff[2]) / 18.
while (dx > DX) {
for (x=max (coeff[2],xval-9*dx); x<=min (coeff[3],xval+9*dx);
x=x+dx) {
dy = abs (wf_msp_eval (coeff, x) - y)
if (dy < yval) {
xval = x
yval = dy
}
}
dx = dx / 10.
}
x = xval
if (x + 1 < coeff[3])
dy = wf_msp_eval (coeff, x+1.) - wf_msp_eval (coeff, x)
else
dy = wf_msp_eval (coeff, x) - wf_msp_eval (coeff, x-1.)
if (!fp_equald (dy, 0.0D0))
dydx = dy
}
yval = int (x)
x = yval + nint ((x-yval) / DX) * DX
return (x)
end
|