1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <math.h>
include "mwcs.h"
.help WFSTG
.nf -------------------------------------------------------------------------
WFSTG -- WCS function driver for the stereographic projection.
Driver routines:
FN_INIT wf_stg_init (fc, dir)
FN_DESTROY (none)
FN_FWD wf_stg_fwd (fc, v1, v2)
FN_INV wf_stg_inv (fc, v1, v2)
.endhelp --------------------------------------------------------------------
# Driver specific fields of function call (FC) descriptor.
define FC_IRA Memi[$1+FCU] # RA axis (1 or 2)
define FC_IDEC Memi[$1+FCU+1] # DEC axis (1 or 2)
define FC_LONGP Memd[P2D($1+FCU+2)] # LONGPOLE (rads)
define FC_COLATP Memd[P2D($1+FCU+4)] # (90 - DEC) (rads)
define FC_COSLATP Memd[P2D($1+FCU+6)] # cosine (90 - DEC)
define FC_SINLATP Memd[P2D($1+FCU+8)] # sine (90 - DEC)
define FC_SPHTOL Memd[P2D($1+FCU+10)] # trig tolerance
define FC_RODEG Memd[P2D($1+FCU+12)] # RO (degs)
define FC_2RODEG Memd[P2D($1+FCU+14)] # 2 * RO (degs)
define FC_REC2RODEG Memd[P2D($1+FCU+16)] # 1 / (2 * RO) (degs)
define FC_BADCVAL Memd[P2D($1+FCU+18)] # Bad coordinate value
define FC_W Memd[P2D($1+FCU+20)+($2)-1] # CRVAL (axis 1 and 2)
# WF_STG_INIT -- Initialize the stereographic forward or inverse transform.
# Initialization for this transformation consists of, determining which
# axis is RA / LON and which is DEC / LAT, computing the celestial longitude
# and colatitude of the native pole, reading in the the native longitude of the
# pole of the celestial coordinate system LONGPOLE from the attribute list,
# precomputing the Euler angles and various intermediary functions of the
# reference coordinates, reading in the projection parameter RO from the
# attribute list, and precomputing some intermediate parameters. If LONGPOLE
# is undefined then a value of 180.0 degrees is assumed. If RO is undefined a
# value of 180.0 / PI is assumed. The STG projection is equivalent to the AZP
# projection with MU set to 1.0. In order to determine the axis order, the
# parameter "axtype={ra|dec} {xlon|xlat}" must have been set in the attribute
# list for the function. The LONGPOLE and RO parameters may be set in either
# or both of the axes attribute lists, but the value in the RA axis attribute
# list takes precedence.
procedure wf_stg_init (fc, dir)
pointer fc #I pointer to FC descriptor
int dir #I direction of transform
int i
double dec
pointer sp, atvalue, ct, mw, wp, wv
int ctod()
errchk wf_decaxis(), mw_gwattrs()
begin
# Allocate space for the attribute string.
call smark (sp)
call salloc (atvalue, SZ_LINE, TY_CHAR)
# Get the required mwcs pointers.
ct = FC_CT(fc)
mw = CT_MW(ct)
wp = FC_WCS(fc)
# Determine which is the DEC axis, and hence the axis order.
call wf_decaxis (fc, FC_IRA(fc), FC_IDEC(fc))
# Get the value of W for each axis, i.e. the world coordinates at
# the reference point.
wv = MI_DBUF(mw) + WCS_W(wp) - 1
do i = 1, 2
FC_W(fc,i) = Memd[wv+CT_AXIS(ct,FC_AXIS(fc,i))-1]
# Get the celestial coordinates of the native pole which are in
# this case the ra and 90 - dec of the reference point.
dec = DDEGTORAD(90.0d0 - FC_W(fc,FC_IDEC(fc)))
# Determine the native longitude of the pole of the celestial
# coordinate system corresponding to the FITS keyword LONGPOLE.
# This number has no default and should normally be set to 180
# degrees. Search both axes for this quantity.
iferr {
call mw_gwattrs (mw, FC_IRA(fc), "longpole", Memc[atvalue], SZ_LINE)
} then {
iferr {
call mw_gwattrs (mw, FC_IDEC(fc), "longpole", Memc[atvalue],
SZ_LINE)
} then {
FC_LONGP(fc) = 180.0d0
} else {
i = 1
if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0)
FC_LONGP(fc) = 180.0d0
if (IS_INDEFD(FC_LONGP(fc)))
FC_LONGP(fc) = 180.0d0
}
} else {
i = 1
if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0)
FC_LONGP(fc) = 180.0d0
if (IS_INDEFD(FC_LONGP(fc)))
FC_LONGP(fc) = 180.0d0
}
FC_LONGP(fc) = DDEGTORAD(FC_LONGP(fc))
# Precompute the trigomometric functions used by the spherical geometry
# code to improve efficiency.
FC_COLATP(fc) = dec
FC_COSLATP(fc) = cos(dec)
FC_SINLATP(fc) = sin(dec)
# Fetch the RO projection parameter which is the radius of the
# generating sphere for the projection. If RO is absent which
# is the usual case set it to 180 / PI. Search both axes for
# this quantity.
iferr {
call mw_gwattrs (mw, FC_IRA(fc), "ro", Memc[atvalue], SZ_LINE)
} then {
iferr {
call mw_gwattrs (mw, FC_IDEC(fc), "ro", Memc[atvalue],
SZ_LINE)
} then {
FC_RODEG(fc) = 180.0d0 / DPI
} else {
i = 1
if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0)
FC_RODEG(fc) = 180.0d0 / DPI
}
} else {
i = 1
if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0)
FC_RODEG(fc) = 180.0d0 / DPI
}
FC_2RODEG(fc) = 2.0d0 * FC_RODEG(fc)
FC_REC2RODEG(fc) = 1.0d0 / FC_2RODEG(fc)
# Fetch the spherical trigonometry tolerance.
FC_SPHTOL(fc) = 1.0d-5
# Fetch the bad coordinate value.
FC_BADCVAL(fc) = INDEFD
# Free working space.
call sfree (sp)
end
# WF_STG_FWD -- Forward transform (physical to world) for the stereographic
# projection.
procedure wf_stg_fwd (fc, p, w)
pointer fc #I pointer to FC descriptor
double p[2] #I physical coordinates (x, y)
double w[2] #O world coordinates (ra, dec)
int ira, idec
double x, y, r, phi, theta, costhe, sinthe, dphi, cosphi, sinphi, ra, dec
double dlng, z
begin
# Get the axis numbers.
ira = FC_IRA(fc)
idec = FC_IDEC(fc)
# Compute native spherical coordinates PHI and THETA in degrees from
# the projected coordinates. This is the projection part of the
# computation.
x = p[ira]
y = p[idec]
r = sqrt (x * x + y * y)
# Compute PHI.
if (r == 0.0d0)
phi = 0.0d0
else
phi = atan2 (x, -y)
# Compute THETA.
theta = DHALFPI - 2.0d0 * atan (r * FC_REC2RODEG(fc))
# Compute the celestial coordinates RA and DEC from the native
# coordinates PHI and THETA. This is the spherical geometry part
# of the computation.
costhe = cos (theta)
sinthe = sin (theta)
dphi = phi - FC_LONGP(fc)
cosphi = cos (dphi)
sinphi = sin (dphi)
# Compute the RA.
x = sinthe * FC_SINLATP(fc) - costhe * FC_COSLATP(fc) * cosphi
if (abs (x) < FC_SPHTOL(fc))
x = -cos (theta + FC_COLATP(fc)) + costhe * FC_COSLATP(fc) *
(1.0d0 - cosphi)
y = -costhe * sinphi
if (x != 0.0d0 || y != 0.0d0) {
dlng = atan2 (y, x)
} else {
dlng = dphi + DPI
}
ra = FC_W(fc,ira) + DRADTODEG(dlng)
# Normalize RA.
if (FC_W(fc,ira) >= 0.0d0) {
if (ra < 0.0d0)
ra = ra + 360.0d0
} else {
if (ra > 0.0d0)
ra = ra - 360.0d0
}
if (ra > 360.0d0)
ra = ra - 360.0d0
else if (ra < -360.0d0)
ra = ra + 360.0d0
# Compute the DEC.
if (mod (dphi, DPI) == 0.0d0) {
dec = DRADTODEG(theta + cosphi * FC_COLATP(fc))
if (dec > 90.0d0)
dec = 180.0d0 - dec
if (dec < -90.0d0)
dec = -180.0d0 - dec
} else {
z = sinthe * FC_COSLATP(fc) + costhe * FC_SINLATP(fc) * cosphi
if (abs(z) > 0.99d0) {
if (z >= 0.0d0)
dec = DRADTODEG(acos (sqrt(x * x + y * y)))
else
dec = DRADTODEG(-acos (sqrt(x * x + y * y)))
} else
dec = DRADTODEG(asin (z))
}
# Store the results.
w[ira] = ra
w[idec] = dec
end
# WF_STG_INV -- Inverse transform (world to physical) for the stereographic
# projection.
procedure wf_stg_inv (fc, w, p)
pointer fc #I pointer to FC descriptor
double w[2] #I input world (RA, DEC) coordinates
double p[2] #I output physical coordinates
int ira, idec
double ra, dec, cosdec, sindec, cosra, sinra, x, y, phi, theta, s, r, dphi, z
begin
# Get the axes numbers.
ira = FC_IRA(fc)
idec = FC_IDEC(fc)
# Compute the transformation from celestial coordinates RA and
# DEC to native coordinates PHI and THETA. This is the spherical
# geometry part of the transformation.
ra = DDEGTORAD (w[ira] - FC_W(fc,ira))
dec = DDEGTORAD (w[idec])
cosra = cos (ra)
sinra = sin (ra)
cosdec = cos (dec)
sindec = sin (dec)
# Compute PHI.
x = sindec * FC_SINLATP(fc) - cosdec * FC_COSLATP(fc) * cosra
if (abs(x) < FC_SPHTOL(fc))
x = -cos (dec + FC_COLATP(fc)) + cosdec * FC_COSLATP(fc) *
(1.0d0 - cosra)
y = -cosdec * sinra
if (x != 0.0d0 || y != 0.0d0)
dphi = atan2 (y, x)
else
dphi = ra - DPI
phi = FC_LONGP(fc) + dphi
if (phi > DPI)
phi = phi - DTWOPI
else if (phi < -DPI)
phi = phi + DTWOPI
# Compute THETA.
if (mod (ra, DPI) ==0.0) {
theta = dec + cosra * FC_COLATP(fc)
if (theta > DHALFPI)
theta = DPI - theta
if (theta < -DHALFPI)
theta = -DPI - theta
} else {
z = sindec * FC_COSLATP(fc) + cosdec * FC_SINLATP(fc) * cosra
if (abs (z) > 0.99d0) {
if (z >= 0.0)
theta = acos (sqrt(x * x + y * y))
else
theta = -acos (sqrt(x * x + y * y))
} else
theta = asin (z)
}
# Compute the transformation from native coordinates PHI and THETA
# to projected coordinates X and Y.
s = 1.0d0 + sin (theta)
if (s == 0.0d0) {
p[ira] = FC_BADCVAL(fc)
p[idec] = FC_BADCVAL(fc)
} else {
r = FC_2RODEG(fc) * cos (theta) / s
p[ira] = r * sin (phi)
p[idec] = -r * cos (phi)
}
end
|