aboutsummaryrefslogtreecommitdiff
path: root/sys/mwcs/zzdebug.x
blob: d098f68b47e51b7592cec50113ca34865311b2a7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include	<mach.h>
include	<math.h>
include	<mwset.h>
include	"imwcs.h"

task	simple	= t_simple,
	wcs	= t_wcs,
	float	= t_float,
	imtest	= t_imtest,
	inv	= t_inv,
	save	= t_save,
	load	= t_load

define	SAVELEN		10240


# SIMPLE -- Simple test of the most common interface routines.

procedure t_simple()

pointer	mw, ct, bp
int	buflen, nchars
real	ltm[2,2], ltv[2], x1,y1, x2,y2
pointer	mw_open(), mw_sctran()
int	mw_save()

begin
	call memchk()
	mw = mw_open (NULL, 2)

	ltm[1,1] = 1.0;  ltm[1,2] = 0.0
	ltm[2,1] = 0.0;  ltm[2,2] = 1.0
	ltv[1]   = 0.0;  ltv[2]   = 0.0
	call mw_sltermr (mw, ltm, ltv, 2)

	ct = mw_sctran (mw, "logical", "physical", 0)
	x1 = 0.5;  y1 = 0.5
	call mw_c2tranr (ct, x1, y1, x2, y2)

	call eprintf ("[%g,%g] -> [%g,%g]\n")
	    call pargr (x1);  call pargr (y1)
	    call pargr (x2);  call pargr (y2)

	bp = NULL
	nchars = mw_save (mw, bp, buflen)
	call mw_load (mw, bp)

	call eprintf ("save/load, save buflen = %d chars, nchars=%d\n")
	    call pargi (buflen)
	    call pargi (nchars)

	ct = mw_sctran (mw, "logical", "physical", 0)
	x1 = 0.5;  y1 = 0.5
	call mw_c2tranr (ct, x1, y1, x2, y2)

	call eprintf ("[%g,%g] -> [%g,%g]\n")
	    call pargr (x1);  call pargr (y1)
	    call pargr (x2);  call pargr (y2)

	call mw_close (mw)
end


# WCS -- Test the creation and use of a world coordinate system.

procedure t_wcs()

pointer	mw, ct1, ct2, ct3
real	pv[100], wv[100]
real	theta, center[2], scale[2], shift[2]
real	ltm[3,3], ltv[3], x1,y1, x2,y2
double	r[3], w[3], cd[3,3]
double	l2m[2,2], l2v_1[2], l2v_2[2], d_theta
int	ndim, axes[3], naxes, npts, i
pointer	mw_open(), mw_sctran()
real	mw_c1tranr()

begin
	call memchk()
	ndim = 3

	# Create a unitary, 3 dim WCS.
	mw = mw_open (NULL, ndim)

	# Examine the Lterm.
	call plterm (mw, ltm, ltv, ndim)

	# Apply a transform to the first 2 axes.
	d_theta = DEGTORAD(30.0D0)
	l2m[1,1] =  cos(d_theta);  l2m[2,1] = sin(d_theta)
	l2m[1,2] = -sin(d_theta);  l2m[2,2] = cos(d_theta)
	l2v_1[1] = 0.0;   l2v_1[2] = 0.0
	l2v_2[1] = 10.0;  l2v_2[2] = 20.0
	#l2v_2[1] = 0.0;  l2v_2[2] = 0.0

	#call mw_translated (mw, l2v_1, l2m, l2v_2, 2)
	theta = d_theta;  call aclrr (center, 2)
	call mw_rotate (mw, theta, center, 3B)
	shift[1] = 10.0;  shift[2] = 20.0
	call mw_shift (mw, shift, 3B)
	scale[1] = 4.0;  scale[2] = 0.2
	call mw_scale (mw, scale, 3B)

	# Examine the Lterm.
	call plterm (mw, ltm, ltv, ndim)

	# Apply the inverse transform.
	d_theta = -d_theta
	l2m[1,1] =  cos(d_theta);  l2m[2,1] = sin(d_theta)
	l2m[1,2] = -sin(d_theta);  l2m[2,2] = cos(d_theta)
	call amovd (l2v_2, l2v_1, 2);  call aclrd (l2v_2, 2)

	#call mw_translated (mw, l2v_1, l2m, l2v_2, 2)
	scale[1] = 1.0/scale[1];  scale[2] = 1.0/scale[2]
	call mw_scale (mw, scale, 3B)
	shift[1] = -shift[1];  shift[2] = -shift[2]
	call mw_shift (mw, shift, 3B)
	call mw_rotate (mw, -theta, center, 3B)

	# Examine the Lterm.
	call plterm (mw, ltm, ltv, ndim)

	# Add a WCS.
	call mw_newsystem (mw, "sky", 3)

	cd[1,1] = .01D0;  cd[2,1] = 0;    cd[3,1] = 0
	cd[1,2] = 0;    cd[2,2] = .01D0;  cd[3,2] = 0
	cd[1,3] = 0;    cd[2,3] = 0;    cd[3,3] = 1
	r[1]    = 0;    r[2]    = 0;    r[3]    = 0
	w[1]    = 100;  w[2]    = 20;   w[3]    = 0

	# Put a tangent projection on axis 1&2.
	call mw_swtermd (mw, r, w, cd, ndim)
	axes[1] = 1;  axes[2] = 2;  naxes = 2
	call mw_swtype (mw, axes, naxes, "tan",
	    "axis 1: axtype=ra  axis 2: axtype=dec")

	# Put a simple sampled curve on axis 3.
	call mw_swtype (mw, 3, 1, "sampled", "")
	npts = 10
	do i = 1, npts {
	    pv[i] = i
	    wv[i] = i * 2
	}
	call mw_swsampr (mw, 3, pv, wv, npts)

	# Try a transform on the axis 1-2 plane.
	ct1 = mw_sctran (mw, "logical", "sky", 3B)
	x1 = 50.0;  y1 = -20.0
	call mw_c2tranr (ct1, x1,y1, x2,y2)
	call eprintf ("[%g,%g]logical -> [%g,%g]sky\n")
	    call pargr (x1);  call pargr (y1)
	    call pargr (x2);  call pargr (y2)

	# Check out the reverse transform.
	ct2 = mw_sctran (mw, "sky", "logical", 3B)
	call mw_c2tranr (ct2, x2,y2, x1,y1)
	call eprintf ("[%g,%g]sky -> [%g,%g]logical\n")
	    call pargr (x2);  call pargr (y2)
	    call pargr (x1);  call pargr (y1)

	# Try evaluating the sampled axis.
	ct3 = mw_sctran (mw, "physical", "sky", 4B)
	x1 = 4.5;  x2 = mw_c1tranr (ct3, x1)
	call eprintf ("axis 3: %gL -> %gS\n")
	    call pargr (x1)
	    call pargr (x2)

	call mw_close (mw)
end


# PLTERM -- Print the Lterm.

procedure plterm (mw, ltm, ltv, ndim)

pointer	mw
real	ltm[ndim,ndim]
real	ltv[ndim]
int	ndim

int	i, j

begin
	# Examine the Lterm.
	call mw_gltermr (mw, ltm, ltv, ndim)
	call eprintf ("----- lterm -----\n")

	do j = 1, ndim {
	    do i = 1, ndim {
		call eprintf (" %8.3f")
		    call pargr (ltm[i,j])
	    }
	    call eprintf (" : %8.3f\n")
		call pargr (ltv[j])
	}
end


# IMTEST -- Test the image header WCS save and load facilities.

procedure t_imtest()

double	cd[3,3], r[3], w[3]
int	ndim, naxes, axes[2], npts, i
pointer	mw, ct1, ct2, ct3, im, iw, cp
real	theta, center[3], shift[3], scale[3], x1,y1, x2,y2, pv[10], wv[10]
pointer	mw_open(), mw_sctran(), immap(), iw_rfits()
real	mw_c1tranr()

begin
	call memchk()
	ndim = 3

	# Create a unitary, 3 dim WCS.
	mw = mw_open (NULL, ndim)

	# Apply a transform to the first 2 axes.
	call aclrr (center, 2)
	theta = DEGTORAD(30.0D0)
	shift[1] = 10.0;  shift[2] = 20.0
	scale[1] = 4.0;   scale[2] = 0.2

	call mw_rotate (mw, theta, center, 3B)
	call mw_shift (mw, shift, 3B)
	call mw_scale (mw, scale, 3B)

	# Add a WCS.
	call mw_newsystem (mw, "sky", 3)

	cd[1,1] = .01D0;  cd[2,1] = 0;    cd[3,1] = 0
	cd[1,2] = 0;    cd[2,2] = .01D0;  cd[3,2] = 0
	cd[1,3] = 0;    cd[2,3] = 0;    cd[3,3] = 1
	r[1]    = 0;    r[2]    = 0;    r[3]    = 0
	w[1]    = 100;  w[2]    = 20;   w[3]    = 0

	# Put a tangent projection on axis 1&2.
	call mw_swtermd (mw, r, w, cd, ndim)
	axes[1] = 1;  axes[2] = 2;  naxes = 2
	call mw_swtype (mw, axes, naxes, "tan",
	    "axis 1: axtype=ra  axis 2: axtype=dec")

	# Put a simple sampled curve on axis 3.
	call mw_swtype (mw, 3, 1, "sampled", "")
	npts = 10
	do i = 1, npts {
	    pv[i] = i
	    wv[i] = i * 2
	}
	call mw_swsampr (mw, 3, pv, wv, npts)

	# Evaluate tests 1.
	# -----------------

	# Try a transform on the axis 1-2 plane.
	ct1 = mw_sctran (mw, "logical", "sky", 3B)
	x1 = 50.0;  y1 = -20.0
	call mw_c2tranr (ct1, x1,y1, x2,y2)
	call eprintf ("[%g,%g]logical -> [%g,%g]sky\n")
	    call pargr (x1);  call pargr (y1)
	    call pargr (x2);  call pargr (y2)

	# Check out the reverse transform.
	ct2 = mw_sctran (mw, "sky", "logical", 3B)
	call mw_c2tranr (ct2, x2,y2, x1,y1)
	call eprintf ("[%g,%g]sky -> [%g,%g]logical\n")
	    call pargr (x2);  call pargr (y2)
	    call pargr (x1);  call pargr (y1)

	# Try evaluating the sampled axis.
	ct3 = mw_sctran (mw, "physical", "sky", 4B)
	x1 = 4.5;  x2 = mw_c1tranr (ct3, x1)
	call eprintf ("axis 3: %gL -> %gS\n")
	    call pargr (x1)
	    call pargr (x2)

	# Test image header save/load.
	call eprintf ("save WCS in image header...\n")
	#iferr (call imdelete ("pix"))
	#    ;
	im = immap ("pix", READ_WRITE, 0)
	call mw_saveim (mw, im)

	# See what we saved.
	call printf ("-------- IMAGE HEADER --------\n")
	iw = iw_rfits (mw, im, RF_REFERENCE)
	do i = 1, IW_NCARDS(iw) {
	    cp = IW_CARD(iw,i)
	    call write (STDOUT, Memc[C_RP(cp)], 80)
	    call putci (STDOUT, '\n')
	}
	call iw_cfits (iw)
	call printf ("------------------------------\n")
	call flush (STDOUT)

	# Reload saved header.
	call mw_loadim (mw, im)

	# Evaluate tests 2.
	# -----------------

	# Try a transform on the axis 1-2 plane.
	ct1 = mw_sctran (mw, "logical", "sky", 3B)
	x1 = 50.0;  y1 = -20.0
	call mw_c2tranr (ct1, x1,y1, x2,y2)
	call eprintf ("[%g,%g]logical -> [%g,%g]sky\n")
	    call pargr (x1);  call pargr (y1)
	    call pargr (x2);  call pargr (y2)

	# Check out the reverse transform.
	ct2 = mw_sctran (mw, "sky", "logical", 3B)
	call mw_c2tranr (ct2, x2,y2, x1,y1)
	call eprintf ("[%g,%g]sky -> [%g,%g]logical\n")
	    call pargr (x2);  call pargr (y2)
	    call pargr (x1);  call pargr (y1)

	# Try evaluating the sampled axis.
	ct3 = mw_sctran (mw, "physical", "sky", 4B)
	x1 = 4.5;  x2 = mw_c1tranr (ct3, x1)
	call eprintf ("axis 3: %gL -> %gS\n")
	    call pargr (x1)
	    call pargr (x2)

	call mw_close (mw)
end


# INV -- Test matrix inversion.

procedure t_inv()

int	i, j
double	a[3,3], b[3,3], c[3,3]
long	seed, clktime()
real	urand()

begin
	# Construct the identity matrix.
	do i = 1, 3 {
	    do j = 1, 3
		a[i,j] = 0.0
	    a[i,i] = 1.0
	}

	# Invert the matrix.
	call mw_invertd (a, b, 3)

	# Print the inverse.
	call printf ("inverse of identity matrix:\n")
	do i = 1, 3 {
	    do j = 1, 3 {
		call printf ("  %20.*f")
		    call pargi (NDIGITS_DP)
		    call pargd (b[i,j])
	    }
	    call printf ("\n")
	}

	# Compute a random matrix.
	seed = clktime(0)
	do i = 1, 3
	    do j = 1, 3
		a[i,j] = urand (seed)

	# Invert the matrix.
	call mw_invertd (a, b, 3)
	call mw_invertd (b, c, 3)

	# Print the difference of the original and the inverted inverse.
	call printf ("difference of inverse of random matrix:\n")
	do i = 1, 3 {
	    do j = 1, 3 {
		call printf ("  %20.*f")
		    call pargi (NDIGITS_DP)
		    call pargd (a[i,j] - c[i,j])
	    }
	    call printf ("\n")
	}
end


# SAVE -- Save a test WCS to a file.

procedure t_save()

pointer	mw, bp
double	cd[3,3], r[3], w[3]
int	ndim, naxes, axes[2], npts, buflen, nchars, fd, i
real	theta, center[3], shift[3], scale[3], pv[10], wv[10]
int	open(), mw_save
pointer	mw_open()

begin
	ndim = 3

	# Create a unitary, 3 dim WCS.
	mw = mw_open (NULL, ndim)

	# Apply a transform to the first 2 axes.
	call aclrr (center, 2)
	theta = DEGTORAD(30.0D0)
	shift[1] = 10.0;  shift[2] = 20.0
	scale[1] = 4.0;   scale[2] = 0.2

	call mw_rotate (mw, theta, center, 3B)
	call mw_shift (mw, shift, 3B)
	call mw_scale (mw, scale, 3B)

	# Add a WCS.
	call mw_newsystem (mw, "sky", 3)

	cd[1,1] = .01D0;  cd[2,1] = 0;    cd[3,1] = 0
	cd[1,2] = 0;    cd[2,2] = .01D0;  cd[3,2] = 0
	cd[1,3] = 0;    cd[2,3] = 0;    cd[3,3] = 1
	r[1]    = 0;    r[2]    = 0;    r[3]    = 0
	w[1]    = 100;  w[2]    = 20;   w[3]    = 0

	# Put a tangent projection on axis 1&2.
	call mw_swtermd (mw, r, w, cd, ndim)
	axes[1] = 1;  axes[2] = 2;  naxes = 2
	call mw_swtype (mw, axes, naxes, "tan",
	    "axis 1: axtype=ra  axis 2: axtype=dec")

	# Put a simple sampled curve on axis 3.
	call mw_swtype (mw, 3, 1, "sampled", "")
	npts = 10
	do i = 1, npts {
	    pv[i] = i
	    wv[i] = i * 2
	}
	call mw_swsampr (mw, 3, pv, wv, npts)

	# Display the new WCS.
	call mw_show (mw, STDOUT, 0)

	# Save to a file.
	bp = NULL;  buflen = 0
	nchars = mw_save (mw, bp, buflen)

	fd = open ("mwcs.sav", NEW_FILE, BINARY_FILE)
	call write (fd, Memc[bp], nchars)
	call close (fd)

	call mfree (bp, TY_CHAR)
	call mw_close (mw)
end


# LOAD -- Load a test WCS from a file.

procedure t_load()

pointer	mw, bp
int	fd, nchars
char	fname[SZ_FNAME]
int	open(), read()
pointer	mw_open()

begin
	call clgstr ("savefile", fname, SZ_FNAME)
	call malloc (bp, SAVELEN, TY_CHAR)

	# Open and read save file.
	fd = open (fname, READ_ONLY, BINARY_FILE)
	nchars = read (fd, Memc[bp], SAVELEN)
	call printf ("read %d chars from %s\n")
	    call pargi (nchars)
	    call pargstr (fname)

	mw = mw_open (NULL, 3)
	call mw_load (mw, bp)

	# Display the new WCS.
	call mw_show (mw, STDOUT, 0)

	call mw_close (mw)
	call mfree (bp, TY_CHAR)
end


# FLOAT -- Test single to double conversions.

procedure t_float()

real	r
double	x

begin
	x = sin(0.34567D0)
	r = 1.0
	call achtrd (r, x, 1)
	call printf ("x = %g\n")
	    call pargd (x)
end


# MEMCHK -- Enable runtime dynamic memory verification.  System dependent,
# should be commented out unless a Fortran callable MEMVER is available for
# linking.

procedure memchk()

begin
	# call memver (2)
end