aboutsummaryrefslogtreecommitdiff
path: root/sys/vops/fftr.f
blob: a6885972f0adab45c187fef801d9904fa14f171a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
c
c-----------------------------------------------------------------------
c subroutine:  ffa
c fast fourier analysis subroutine
c-----------------------------------------------------------------------
c
      subroutine ffa (b, nfft, ier)
c
c this subroutine replaces the real vector b(k),  (k=1,2,...,n),
c with its finite discrete fourier transform.  the dc term is
c returned in location b(1) with b(2) set to 0.  thereafter, the
c jth harmonic is returned as a complex number stored as
c b(2*j+1) + i b(2*j+2).  note that the n/2 harmonic is returned
c in b(n+1) with b(n+2) set to 0.  hence, b must be dimensioned
c to size n+2.
c subroutine is called as ffa (b,n) where n=2**m and b is an
c n term real array.  a real-valued, radix 8  algorithm is used
c with in-place reordering and the trig functions are computed as
c needed.
c
      dimension b(2)
      common /con/ pii, p7, p7two, c22, s22, pi2
c
c iw is a machine dependent write device number
c
c+noao
c      iw = i1mach(2)
      ier = 0
c-noao
c
      pii = 4.*atan(1.)
      pi8 = pii/8.
      p7 = 1./sqrt(2.)
      p7two = 2.*p7
      c22 = cos(pi8)
      s22 = sin(pi8)
      pi2 = 2.*pii
      n = 1
      do 10 i=1,31
        m = i
        n = n*2
        if (n.eq.nfft) go to 20
  10  continue
c+noao
c      write (iw,9999)
c9999  format (30h nfft not a power of 2 for ffa)
c      stop
       ier = 1
       return
c-noao
  20  continue
      n8pow = m/3
c
c do a radix 2 or radix 4 iteration first if one is required
c
      if (m-n8pow*3-1) 50, 40, 30
  30  nn = 4
      int = n/nn
      call r4tr(int, b(1), b(int+1), b(2*int+1), b(3*int+1))
      go to 60
  40  nn = 2
      int = n/nn
      call r2tr(int, b(1), b(int+1))
      go to 60
  50  nn = 1
c
c perform radix 8 iterations
c
  60  if (n8pow) 90, 90, 70
  70  do 80 it=1,n8pow
        nn = nn*8
        int = n/nn
        call r8tr(int, nn, b(1), b(int+1), b(2*int+1), b(3*int+1),
     *      b(4*int+1), b(5*int+1), b(6*int+1), b(7*int+1), b(1),
     *      b(int+1), b(2*int+1), b(3*int+1), b(4*int+1), b(5*int+1),
     *      b(6*int+1), b(7*int+1))
  80  continue
c
c perform in-place reordering
c
  90  call ord1(m, b)
      call ord2(m, b)
      t = b(2)
      b(2) = 0.
      b(nfft+1) = t
      b(nfft+2) = 0.
      do 100 i=4,nfft,2
        b(i) = -b(i)
 100  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  ffs
c fast fourier synthesis subroutine
c radix 8-4-2
c-----------------------------------------------------------------------
c
      subroutine ffs (b, nfft, ier)
c
c this subroutine synthesizes the real vector b(k), where
c k=1,2,...,n. the initial fourier coefficients are placed in
c the b array of size n+2.  the dc term is in b(1) with
c b(2) equal to 0.
c the jth harmonic is stored as b(2*j+1) + i b(2*j+2).
c the n/2 harmonic is in b(n+1) with b(n+2) equal to 0.
c the subroutine is called as ffs(b,n) where n=2**m and
c b is the n term real array discussed above.
c
      dimension b(2)
      common /con1/ pii, p7, p7two, c22, s22, pi2
c
c iw is a machine dependent write device number
c
c+noao
c      iw = i1mach(2)
      ier = 0
c-noao
c
      pii = 4.*atan(1.)
      pi8 = pii/8.
      p7 = 1./sqrt(2.)
      p7two = 2.*p7
      c22 = cos(pi8)
      s22 = sin(pi8)
      pi2 = 2.*pii
      n = 1
      do 10 i=1,31
        m = i
        n = n*2
        if (n.eq.nfft) go to 20
  10  continue
c+noao
c      write (iw,9999)
c9999  format (30h nfft not a power of 2 for ffs)
c      stop
      ier = 1
      return
c-noao
  20  continue
      b(2) = b(nfft+1)
      do 30 i=1,nfft
        b(i) = b(i)/float(nfft)
  30  continue
      do 40 i=4,nfft,2
        b(i) = -b(i)
  40  continue
      n8pow = m/3
c
c reorder the input fourier coefficients
c
      call ord2(m, b)
      call ord1(m, b)
c
      if (n8pow.eq.0) go to 60
c
c perform the radix 8 iterations
c
      nn = n
      do 50 it=1,n8pow
        int = n/nn
        call r8syn(int, nn, b, b(int+1), b(2*int+1), b(3*int+1),
     *      b(4*int+1), b(5*int+1), b(6*int+1), b(7*int+1), b(1),
     *      b(int+1), b(2*int+1), b(3*int+1), b(4*int+1), b(5*int+1),
     *      b(6*int+1), b(7*int+1))
        nn = nn/8
  50  continue
c
c do a radix 2 or radix 4 iteration if one is required
c
  60  if (m-n8pow*3-1) 90, 80, 70
  70  int = n/4
      call r4syn(int, b(1), b(int+1), b(2*int+1), b(3*int+1))
      go to 90
  80  int = n/2
      call r2tr(int, b(1), b(int+1))
  90  return
      end
c
c-----------------------------------------------------------------------
c subroutine:  r2tr
c radix 2 iteration subroutine
c-----------------------------------------------------------------------
c
c
      subroutine r2tr(int, b0, b1)
      dimension b0(2), b1(2)
      do 10 k=1,int
        t = b0(k) + b1(k)
        b1(k) = b0(k) - b1(k)
        b0(k) = t
  10  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  r4tr
c radix 4 iteration subroutine
c-----------------------------------------------------------------------
c
      subroutine r4tr(int, b0, b1, b2, b3)
      dimension b0(2), b1(2), b2(2), b3(2)
      do 10 k=1,int
        r0 = b0(k) + b2(k)
        r1 = b1(k) + b3(k)
        b2(k) = b0(k) - b2(k)
        b3(k) = b1(k) - b3(k)
        b0(k) = r0 + r1
        b1(k) = r0 - r1
  10  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine: r8tr
c radix 8 iteration subroutine
c-----------------------------------------------------------------------
c
      subroutine r8tr(int, nn, br0, br1, br2, br3, br4, br5, br6, br7,
     *    bi0, bi1, bi2, bi3, bi4, bi5, bi6, bi7)
      dimension l(15), br0(2), br1(2), br2(2), br3(2), br4(2), br5(2),
     *    br6(2), br7(2), bi0(2), bi1(2), bi2(2), bi3(2), bi4(2),
     *    bi5(2), bi6(2), bi7(2)
      common /con/ pii, p7, p7two, c22, s22, pi2
      equivalence (l15,l(1)), (l14,l(2)), (l13,l(3)), (l12,l(4)),
     *    (l11,l(5)), (l10,l(6)), (l9,l(7)), (l8,l(8)), (l7,l(9)),
     *    (l6,l(10)), (l5,l(11)), (l4,l(12)), (l3,l(13)), (l2,l(14)),
     *    (l1,l(15))
c
c set up counters such that jthet steps through the arguments
c of w, jr steps through starting locations for the real part of the
c intermediate results and ji steps through starting locations
c of the imaginary part of the intermediate results.
c
      l(1) = nn/8
      do 40 k=2,15
        if (l(k-1)-2) 10, 20, 30
  10    l(k-1) = 2
  20    l(k) = 2
        go to 40
  30    l(k) = l(k-1)/2
  40  continue
      piovn = pii/float(nn)
      ji = 3
      jl = 2
      jr = 2
      do 120 j1=2,l1,2
      do 120 j2=j1,l2,l1
      do 120 j3=j2,l3,l2
      do 120 j4=j3,l4,l3
      do 120 j5=j4,l5,l4
      do 120 j6=j5,l6,l5
      do 120 j7=j6,l7,l6
      do 120 j8=j7,l8,l7
      do 120 j9=j8,l9,l8
      do 120 j10=j9,l10,l9
      do 120 j11=j10,l11,l10
      do 120 j12=j11,l12,l11
      do 120 j13=j12,l13,l12
      do 120 j14=j13,l14,l13
      do 120 jthet=j14,l15,l14
        th2 = jthet - 2
        if (th2) 50, 50, 90
  50    do 60 k=1,int
          t0 = br0(k) + br4(k)
          t1 = br1(k) + br5(k)
          t2 = br2(k) + br6(k)
          t3 = br3(k) + br7(k)
          t4 = br0(k) - br4(k)
          t5 = br1(k) - br5(k)
          t6 = br2(k) - br6(k)
          t7 = br3(k) - br7(k)
          br2(k) = t0 - t2
          br3(k) = t1 - t3
          t0 = t0 + t2
          t1 = t1 + t3
          br0(k) = t0 + t1
          br1(k) = t0 - t1
          pr = p7*(t5-t7)
          pi = p7*(t5+t7)
          br4(k) = t4 + pr
          br7(k) = t6 + pi
          br6(k) = t4 - pr
          br5(k) = pi - t6
  60    continue
        if (nn-8) 120, 120, 70
  70    k0 = int*8 + 1
        kl = k0 + int - 1
        do 80 k=k0,kl
          pr = p7*(bi2(k)-bi6(k))
          pi = p7*(bi2(k)+bi6(k))
          tr0 = bi0(k) + pr
          ti0 = bi4(k) + pi
          tr2 = bi0(k) - pr
          ti2 = bi4(k) - pi
          pr = p7*(bi3(k)-bi7(k))
          pi = p7*(bi3(k)+bi7(k))
          tr1 = bi1(k) + pr
          ti1 = bi5(k) + pi
          tr3 = bi1(k) - pr
          ti3 = bi5(k) - pi
          pr = tr1*c22 - ti1*s22
          pi = ti1*c22 + tr1*s22
          bi0(k) = tr0 + pr
          bi6(k) = tr0 - pr
          bi7(k) = ti0 + pi
          bi1(k) = pi - ti0
          pr = -tr3*s22 - ti3*c22
          pi = tr3*c22 - ti3*s22
          bi2(k) = tr2 + pr
          bi4(k) = tr2 - pr
          bi5(k) = ti2 + pi
          bi3(k) = pi - ti2
  80    continue
        go to 120
  90    arg = th2*piovn
        c1 = cos(arg)
        s1 = sin(arg)
        c2 = c1**2 - s1**2
        s2 = c1*s1 + c1*s1
        c3 = c1*c2 - s1*s2
        s3 = c2*s1 + s2*c1
        c4 = c2**2 - s2**2
        s4 = c2*s2 + c2*s2
        c5 = c2*c3 - s2*s3
        s5 = c3*s2 + s3*c2
        c6 = c3**2 - s3**2
        s6 = c3*s3 + c3*s3
        c7 = c3*c4 - s3*s4
        s7 = c4*s3 + s4*c3
        int8 = int*8
        j0 = jr*int8 + 1
        k0 = ji*int8 + 1
        jlast = j0 + int - 1
        do 100 j=j0,jlast
          k = k0 + j - j0
          tr1 = br1(j)*c1 - bi1(k)*s1
          ti1 = br1(j)*s1 + bi1(k)*c1
          tr2 = br2(j)*c2 - bi2(k)*s2
          ti2 = br2(j)*s2 + bi2(k)*c2
          tr3 = br3(j)*c3 - bi3(k)*s3
          ti3 = br3(j)*s3 + bi3(k)*c3
          tr4 = br4(j)*c4 - bi4(k)*s4
          ti4 = br4(j)*s4 + bi4(k)*c4
          tr5 = br5(j)*c5 - bi5(k)*s5
          ti5 = br5(j)*s5 + bi5(k)*c5
          tr6 = br6(j)*c6 - bi6(k)*s6
          ti6 = br6(j)*s6 + bi6(k)*c6
          tr7 = br7(j)*c7 - bi7(k)*s7
          ti7 = br7(j)*s7 + bi7(k)*c7
c
          t0 = br0(j) + tr4
          t1 = bi0(k) + ti4
          tr4 = br0(j) - tr4
          ti4 = bi0(k) - ti4
          t2 = tr1 + tr5
          t3 = ti1 + ti5
          tr5 = tr1 - tr5
          ti5 = ti1 - ti5
          t4 = tr2 + tr6
          t5 = ti2 + ti6
          tr6 = tr2 - tr6
          ti6 = ti2 - ti6
          t6 = tr3 + tr7
          t7 = ti3 + ti7
          tr7 = tr3 - tr7
          ti7 = ti3 - ti7
c
          tr0 = t0 + t4
          ti0 = t1 + t5
          tr2 = t0 - t4
          ti2 = t1 - t5
          tr1 = t2 + t6
          ti1 = t3 + t7
          tr3 = t2 - t6
          ti3 = t3 - t7
          t0 = tr4 - ti6
          t1 = ti4 + tr6
          t4 = tr4 + ti6
          t5 = ti4 - tr6
          t2 = tr5 - ti7
          t3 = ti5 + tr7
          t6 = tr5 + ti7
          t7 = ti5 - tr7
          br0(j) = tr0 + tr1
          bi7(k) = ti0 + ti1
          bi6(k) = tr0 - tr1
          br1(j) = ti1 - ti0
          br2(j) = tr2 - ti3
          bi5(k) = ti2 + tr3
          bi4(k) = tr2 + ti3
          br3(j) = tr3 - ti2
          pr = p7*(t2-t3)
          pi = p7*(t2+t3)
          br4(j) = t0 + pr
          bi3(k) = t1 + pi
          bi2(k) = t0 - pr
          br5(j) = pi - t1
          pr = -p7*(t6+t7)
          pi = p7*(t6-t7)
          br6(j) = t4 + pr
          bi1(k) = t5 + pi
          bi0(k) = t4 - pr
          br7(j) = pi - t5
 100    continue
        jr = jr + 2
        ji = ji - 2
        if (ji-jl) 110, 110, 120
 110    ji = 2*jr - 1
        jl = jr
 120  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  r4syn
c radix 4 synthesis
c-----------------------------------------------------------------------
c
      subroutine r4syn(int, b0, b1, b2, b3)
      dimension b0(2), b1(2), b2(2), b3(2)
      do 10 k=1,int
        t0 = b0(k) + b1(k)
        t1 = b0(k) - b1(k)
        t2 = b2(k) + b2(k)
        t3 = b3(k) + b3(k)
        b0(k) = t0 + t2
        b2(k) = t0 - t2
        b1(k) = t1 + t3
        b3(k) = t1 - t3
  10  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  r8syn
c radix 8 synthesis subroutine
c-----------------------------------------------------------------------
c
      subroutine r8syn(int, nn, br0, br1, br2, br3, br4, br5, br6, br7,
     *    bi0, bi1, bi2, bi3, bi4, bi5, bi6, bi7)
      dimension l(15), br0(2), br1(2), br2(2), br3(2), br4(2), br5(2),
     *    br6(2), br7(2), bi0(2), bi1(2), bi2(2), bi3(2), bi4(2),
     *    bi5(2), bi6(2), bi7(2)
      common /con1/ pii, p7, p7two, c22, s22, pi2
      equivalence (l15,l(1)), (l14,l(2)), (l13,l(3)), (l12,l(4)),
     *    (l11,l(5)), (l10,l(6)), (l9,l(7)), (l8,l(8)), (l7,l(9)),
     *    (l6,l(10)), (l5,l(11)), (l4,l(12)), (l3,l(13)), (l2,l(14)),
     *    (l1,l(15))
      l(1) = nn/8
      do 40 k=2,15
        if (l(k-1)-2) 10, 20, 30
  10    l(k-1) = 2
  20    l(k) = 2
        go to 40
  30    l(k) = l(k-1)/2
  40  continue
      piovn = pii/float(nn)
      ji = 3
      jl = 2
      jr = 2
c
      do 120 j1=2,l1,2
      do 120 j2=j1,l2,l1
      do 120 j3=j2,l3,l2
      do 120 j4=j3,l4,l3
      do 120 j5=j4,l5,l4
      do 120 j6=j5,l6,l5
      do 120 j7=j6,l7,l6
      do 120 j8=j7,l8,l7
      do 120 j9=j8,l9,l8
      do 120 j10=j9,l10,l9
      do 120 j11=j10,l11,l10
      do 120 j12=j11,l12,l11
      do 120 j13=j12,l13,l12
      do 120 j14=j13,l14,l13
      do 120 jthet=j14,l15,l14
        th2 = jthet - 2
        if (th2) 50, 50, 90
  50    do 60 k=1,int
          t0 = br0(k) + br1(k)
          t1 = br0(k) - br1(k)
          t2 = br2(k) + br2(k)
          t3 = br3(k) + br3(k)
          t4 = br4(k) + br6(k)
          t6 = br7(k) - br5(k)
          t5 = br4(k) - br6(k)
          t7 = br7(k) + br5(k)
          pr = p7*(t7+t5)
          pi = p7*(t7-t5)
          tt0 = t0 + t2
          tt1 = t1 + t3
          t2 = t0 - t2
          t3 = t1 - t3
          t4 = t4 + t4
          t5 = pr + pr
          t6 = t6 + t6
          t7 = pi + pi
          br0(k) = tt0 + t4
          br1(k) = tt1 + t5
          br2(k) = t2 + t6
          br3(k) = t3 + t7
          br4(k) = tt0 - t4
          br5(k) = tt1 - t5
          br6(k) = t2 - t6
          br7(k) = t3 - t7
  60    continue
        if (nn-8) 120, 120, 70
  70    k0 = int*8 + 1
        kl = k0 + int - 1
        do 80 k=k0,kl
          t1 = bi0(k) + bi6(k)
          t2 = bi7(k) - bi1(k)
          t3 = bi0(k) - bi6(k)
          t4 = bi7(k) + bi1(k)
          pr = t3*c22 + t4*s22
          pi = t4*c22 - t3*s22
          t5 = bi2(k) + bi4(k)
          t6 = bi5(k) - bi3(k)
          t7 = bi2(k) - bi4(k)
          t8 = bi5(k) + bi3(k)
          rr = t8*c22 - t7*s22
          ri = -t8*s22 - t7*c22
          bi0(k) = (t1+t5) + (t1+t5)
          bi4(k) = (t2+t6) + (t2+t6)
          bi1(k) = (pr+rr) + (pr+rr)
          bi5(k) = (pi+ri) + (pi+ri)
          t5 = t1 - t5
          t6 = t2 - t6
          bi2(k) = p7two*(t6+t5)
          bi6(k) = p7two*(t6-t5)
          rr = pr - rr
          ri = pi - ri
          bi3(k) = p7two*(ri+rr)
          bi7(k) = p7two*(ri-rr)
  80    continue
        go to 120
  90    arg = th2*piovn
        c1 = cos(arg)
        s1 = -sin(arg)
        c2 = c1**2 - s1**2
        s2 = c1*s1 + c1*s1
        c3 = c1*c2 - s1*s2
        s3 = c2*s1 + s2*c1
        c4 = c2**2 - s2**2
        s4 = c2*s2 + c2*s2
        c5 = c2*c3 - s2*s3
        s5 = c3*s2 + s3*c2
        c6 = c3**2 - s3**2
        s6 = c3*s3 + c3*s3
        c7 = c3*c4 - s3*s4
        s7 = c4*s3 + s4*c3
        int8 = int*8
        j0 = jr*int8 + 1
        k0 = ji*int8 + 1
        jlast = j0 + int - 1
        do 100 j=j0,jlast
          k = k0 + j - j0
          tr0 = br0(j) + bi6(k)
          ti0 = bi7(k) - br1(j)
          tr1 = br0(j) - bi6(k)
          ti1 = bi7(k) + br1(j)
          tr2 = br2(j) + bi4(k)
          ti2 = bi5(k) - br3(j)
          tr3 = bi5(k) + br3(j)
          ti3 = bi4(k) - br2(j)
          tr4 = br4(j) + bi2(k)
          ti4 = bi3(k) - br5(j)
          t0 = br4(j) - bi2(k)
          t1 = bi3(k) + br5(j)
          tr5 = p7*(t0+t1)
          ti5 = p7*(t1-t0)
          tr6 = br6(j) + bi0(k)
          ti6 = bi1(k) - br7(j)
          t0 = br6(j) - bi0(k)
          t1 = bi1(k) + br7(j)
          tr7 = -p7*(t0-t1)
          ti7 = -p7*(t1+t0)
          t0 = tr0 + tr2
          t1 = ti0 + ti2
          t2 = tr1 + tr3
          t3 = ti1 + ti3
          tr2 = tr0 - tr2
          ti2 = ti0 - ti2
          tr3 = tr1 - tr3
          ti3 = ti1 - ti3
          t4 = tr4 + tr6
          t5 = ti4 + ti6
          t6 = tr5 + tr7
          t7 = ti5 + ti7
          ttr6 = ti4 - ti6
          ti6 = tr6 - tr4
          ttr7 = ti5 - ti7
          ti7 = tr7 - tr5
          br0(j) = t0 + t4
          bi0(k) = t1 + t5
          br1(j) = c1*(t2+t6) - s1*(t3+t7)
          bi1(k) = c1*(t3+t7) + s1*(t2+t6)
          br2(j) = c2*(tr2+ttr6) - s2*(ti2+ti6)
          bi2(k) = c2*(ti2+ti6) + s2*(tr2+ttr6)
          br3(j) = c3*(tr3+ttr7) - s3*(ti3+ti7)
          bi3(k) = c3*(ti3+ti7) + s3*(tr3+ttr7)
          br4(j) = c4*(t0-t4) - s4*(t1-t5)
          bi4(k) = c4*(t1-t5) + s4*(t0-t4)
          br5(j) = c5*(t2-t6) - s5*(t3-t7)
          bi5(k) = c5*(t3-t7) + s5*(t2-t6)
          br6(j) = c6*(tr2-ttr6) - s6*(ti2-ti6)
          bi6(k) = c6*(ti2-ti6) + s6*(tr2-ttr6)
          br7(j) = c7*(tr3-ttr7) - s7*(ti3-ti7)
          bi7(k) = c7*(ti3-ti7) + s7*(tr3-ttr7)
 100    continue
        jr = jr + 2
        ji = ji - 2
        if (ji-jl) 110, 110, 120
 110    ji = 2*jr - 1
        jl = jr
 120  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  ord1
c in-place reordering subroutine
c-----------------------------------------------------------------------
c
      subroutine ord1(m, b)
      dimension b(2)
c
      k = 4
      kl = 2
      n = 2**m
      do 40 j=4,n,2
        if (k-j) 20, 20, 10
  10    t = b(j)
        b(j) = b(k)
        b(k) = t
  20    k = k - 2
        if (k-kl) 30, 30, 40
  30    k = 2*j
        kl = j
  40  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  ord2
c in-place reordering subroutine
c-----------------------------------------------------------------------
c
      subroutine ord2(m, b)
      dimension l(15), b(2)
      equivalence (l15,l(1)), (l14,l(2)), (l13,l(3)), (l12,l(4)),
     *    (l11,l(5)), (l10,l(6)), (l9,l(7)), (l8,l(8)), (l7,l(9)),
     *    (l6,l(10)), (l5,l(11)), (l4,l(12)), (l3,l(13)), (l2,l(14)),
     *    (l1,l(15))
      n = 2**m
      l(1) = n
      do 10 k=2,m
        l(k) = l(k-1)/2
  10  continue
      do 20 k=m,14
        l(k+1) = 2
  20  continue
      ij = 2
      do 40 j1=2,l1,2
      do 40 j2=j1,l2,l1
      do 40 j3=j2,l3,l2
      do 40 j4=j3,l4,l3
      do 40 j5=j4,l5,l4
      do 40 j6=j5,l6,l5
      do 40 j7=j6,l7,l6
      do 40 j8=j7,l8,l7
      do 40 j9=j8,l9,l8
      do 40 j10=j9,l10,l9
      do 40 j11=j10,l11,l10
      do 40 j12=j11,l12,l11
      do 40 j13=j12,l13,l12
      do 40 j14=j13,l14,l13
      do 40 ji=j14,l15,l14
        if (ij-ji) 30, 40, 40
  30    t = b(ij-1)
        b(ij-1) = b(ji-1)
        b(ji-1) = t
        t = b(ij)
        b(ij) = b(ji)
        b(ji) = t
  40    ij = ij + 2
      return
      end