aboutsummaryrefslogtreecommitdiff
path: root/sys/vops/fftx.f
blob: 2e8a562098698ea96ffabba201c6218659b38a36 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
c
c-----------------------------------------------------------------------
c subroutine:  fft842
c fast fourier transform for n=2**m
c complex input
c-----------------------------------------------------------------------
c
      subroutine fft842 (in, n, x, y, ier)
c
c this program replaces the vector z=x+iy by its  finite
c discrete, complex fourier transform if in=0.  the inverse transform
c is calculated for in=1.  it performs as many base
c 8 iterations as possible and then finishes with a base 4 iteration
c or a base 2 iteration if needed.
c
c the subroutine is called as subroutine fft842 (in,n,x,y).
c the integer n (a power of 2), the n real location array x, and
c the n real location array y must be supplied to the subroutine.
c
      dimension x(*), y(*), l(15)
      common /con2/ pi2, p7
      equivalence (l15,l(1)), (l14,l(2)), (l13,l(3)), (l12,l(4)),
     *    (l11,l(5)), (l10,l(6)), (l9,l(7)), (l8,l(8)), (l7,l(9)),
     *    (l6,l(10)), (l5,l(11)), (l4,l(12)), (l3,l(13)), (l2,l(14)),
     *    (l1,l(15))
c
c
c iw is a machine dependent write device number
c
c+noao
c      iw = i1mach(2)
      ier = 0
c-noao
c
      pi2 = 8.*atan(1.)
      p7 = 1./sqrt(2.)
      do 10 i=1,31
        m = i
        nt = 2**i
        if (n.eq.nt) go to 20
  10  continue
c+noao
c      write (iw,9999)
c9999  format (35h n is not a power of two for fft842)
c      stop
      ier = 1
      return
c-noao
  20  n2pow = m
      nthpo = n
      fn = nthpo
      if (in.eq.1) go to 40
      do 30 i=1,nthpo
        y(i) = -y(i)
  30  continue
  40  n8pow = n2pow/3
      if (n8pow.eq.0) go to 60
c
c radix 8 passes,if any.
c
      do 50 ipass=1,n8pow
        nxtlt = 2**(n2pow-3*ipass)
        lengt = 8*nxtlt
        call r8tx(nxtlt, nthpo, lengt, x(1), x(nxtlt+1), x(2*nxtlt+1),
     *      x(3*nxtlt+1), x(4*nxtlt+1), x(5*nxtlt+1), x(6*nxtlt+1),
     *      x(7*nxtlt+1), y(1), y(nxtlt+1), y(2*nxtlt+1), y(3*nxtlt+1),
     *      y(4*nxtlt+1), y(5*nxtlt+1), y(6*nxtlt+1), y(7*nxtlt+1))
  50  continue
c
c is there a four factor left
c
  60  if (n2pow-3*n8pow-1) 90, 70, 80
c
c go through the base 2 iteration
c
c
  70  call r2tx(nthpo, x(1), x(2), y(1), y(2))
      go to 90
c
c go through the base 4 iteration
c
  80  call r4tx(nthpo, x(1), x(2), x(3), x(4), y(1), y(2), y(3), y(4))
c
  90  do 110 j=1,31
        l(j) = 1
        if (j-n2pow) 100, 100, 110
 100    l(j) = 2**(n2pow+1-j)
 110  continue
      ij = 1
      do 130 j1=1,l1
      do 130 j2=j1,l2,l1
      do 130 j3=j2,l3,l2
      do 130 j4=j3,l4,l3
      do 130 j5=j4,l5,l4
      do 130 j6=j5,l6,l5
      do 130 j7=j6,l7,l6
      do 130 j8=j7,l8,l7
      do 130 j9=j8,l9,l8
      do 130 j10=j9,l10,l9
      do 130 j11=j10,l11,l10
      do 130 j12=j11,l12,l11
      do 130 j13=j12,l13,l12
      do 130 j14=j13,l14,l13
      do 130 ji=j14,l15,l14
        if (ij-ji) 120, 130, 130
 120    r = x(ij)
        x(ij) = x(ji)
        x(ji) = r
        fi = y(ij)
        y(ij) = y(ji)
        y(ji) = fi
 130    ij = ij + 1
      if (in.eq.1) go to 150
      do 140 i=1,nthpo
        y(i) = -y(i)
 140  continue
      go to 170
 150  do 160 i=1,nthpo
        x(i) = x(i)/fn
        y(i) = y(i)/fn
 160  continue
 170  return
      end
c
c-----------------------------------------------------------------------
c subroutine:  r2tx
c radix 2 iteration subroutine
c-----------------------------------------------------------------------
c
      subroutine r2tx(nthpo, cr0, cr1, ci0, ci1)
      dimension cr0(2), cr1(2), ci0(2), ci1(2)
      do 10 k=1,nthpo,2
        r1 = cr0(k) + cr1(k)
        cr1(k) = cr0(k) - cr1(k)
        cr0(k) = r1
        fi1 = ci0(k) + ci1(k)
        ci1(k) = ci0(k) - ci1(k)
        ci0(k) = fi1
  10  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  r4tx
c radix 4 iteration subroutine
c-----------------------------------------------------------------------
c
      subroutine r4tx(nthpo, cr0, cr1, cr2, cr3, ci0, ci1, ci2, ci3)
      dimension cr0(2), cr1(2), cr2(2), cr3(2), ci0(2), ci1(2), ci2(2),
     *    ci3(2)
      do 10 k=1,nthpo,4
        r1 = cr0(k) + cr2(k)
        r2 = cr0(k) - cr2(k)
        r3 = cr1(k) + cr3(k)
        r4 = cr1(k) - cr3(k)
        fi1 = ci0(k) + ci2(k)
        fi2 = ci0(k) - ci2(k)
        fi3 = ci1(k) + ci3(k)
        fi4 = ci1(k) - ci3(k)
        cr0(k) = r1 + r3
        ci0(k) = fi1 + fi3
        cr1(k) = r1 - r3
        ci1(k) = fi1 - fi3
        cr2(k) = r2 - fi4
        ci2(k) = fi2 + r4
        cr3(k) = r2 + fi4
        ci3(k) = fi2 - r4
  10  continue
      return
      end
c
c-----------------------------------------------------------------------
c subroutine:  r8tx
c radix 8 iteration subroutine
c-----------------------------------------------------------------------
c
      subroutine r8tx(nxtlt, nthpo, lengt, cr0, cr1, cr2, cr3, cr4,
     *    cr5, cr6, cr7, ci0, ci1, ci2, ci3, ci4, ci5, ci6, ci7)
      dimension cr0(2), cr1(2), cr2(2), cr3(2), cr4(2), cr5(2), cr6(2),
     *    cr7(2), ci1(2), ci2(2), ci3(2), ci4(2), ci5(2), ci6(2),
     *    ci7(2), ci0(2)
      common /con2/ pi2, p7
c
      scale = pi2/float(lengt)
      do 30 j=1,nxtlt
        arg = float(j-1)*scale
        c1 = cos(arg)
        s1 = sin(arg)
        c2 = c1**2 - s1**2
        s2 = c1*s1 + c1*s1
        c3 = c1*c2 - s1*s2
        s3 = c2*s1 + s2*c1
        c4 = c2**2 - s2**2
        s4 = c2*s2 + c2*s2
        c5 = c2*c3 - s2*s3
        s5 = c3*s2 + s3*c2
        c6 = c3**2 - s3**2
        s6 = c3*s3 + c3*s3
        c7 = c3*c4 - s3*s4
        s7 = c4*s3 + s4*c3
        do 20 k=j,nthpo,lengt
          ar0 = cr0(k) + cr4(k)
          ar1 = cr1(k) + cr5(k)
          ar2 = cr2(k) + cr6(k)
          ar3 = cr3(k) + cr7(k)
          ar4 = cr0(k) - cr4(k)
          ar5 = cr1(k) - cr5(k)
          ar6 = cr2(k) - cr6(k)
          ar7 = cr3(k) - cr7(k)
          ai0 = ci0(k) + ci4(k)
          ai1 = ci1(k) + ci5(k)
          ai2 = ci2(k) + ci6(k)
          ai3 = ci3(k) + ci7(k)
          ai4 = ci0(k) - ci4(k)
          ai5 = ci1(k) - ci5(k)
          ai6 = ci2(k) - ci6(k)
          ai7 = ci3(k) - ci7(k)
          br0 = ar0 + ar2
          br1 = ar1 + ar3
          br2 = ar0 - ar2
          br3 = ar1 - ar3
          br4 = ar4 - ai6
          br5 = ar5 - ai7
          br6 = ar4 + ai6
          br7 = ar5 + ai7
          bi0 = ai0 + ai2
          bi1 = ai1 + ai3
          bi2 = ai0 - ai2
          bi3 = ai1 - ai3
          bi4 = ai4 + ar6
          bi5 = ai5 + ar7
          bi6 = ai4 - ar6
          bi7 = ai5 - ar7
          cr0(k) = br0 + br1
          ci0(k) = bi0 + bi1
          if (j.le.1) go to 10
          cr1(k) = c4*(br0-br1) - s4*(bi0-bi1)
          ci1(k) = c4*(bi0-bi1) + s4*(br0-br1)
          cr2(k) = c2*(br2-bi3) - s2*(bi2+br3)
          ci2(k) = c2*(bi2+br3) + s2*(br2-bi3)
          cr3(k) = c6*(br2+bi3) - s6*(bi2-br3)
          ci3(k) = c6*(bi2-br3) + s6*(br2+bi3)
          tr = p7*(br5-bi5)
          ti = p7*(br5+bi5)
          cr4(k) = c1*(br4+tr) - s1*(bi4+ti)
          ci4(k) = c1*(bi4+ti) + s1*(br4+tr)
          cr5(k) = c5*(br4-tr) - s5*(bi4-ti)
          ci5(k) = c5*(bi4-ti) + s5*(br4-tr)
          tr = -p7*(br7+bi7)
          ti = p7*(br7-bi7)
          cr6(k) = c3*(br6+tr) - s3*(bi6+ti)
          ci6(k) = c3*(bi6+ti) + s3*(br6+tr)
          cr7(k) = c7*(br6-tr) - s7*(bi6-ti)
          ci7(k) = c7*(bi6-ti) + s7*(br6-tr)
          go to 20
  10      cr1(k) = br0 - br1
          ci1(k) = bi0 - bi1
          cr2(k) = br2 - bi3
          ci2(k) = bi2 + br3
          cr3(k) = br2 + bi3
          ci3(k) = bi2 - br3
          tr = p7*(br5-bi5)
          ti = p7*(br5+bi5)
          cr4(k) = br4 + tr
          ci4(k) = bi4 + ti
          cr5(k) = br4 - tr
          ci5(k) = bi4 - ti
          tr = -p7*(br7+bi7)
          ti = p7*(br7-bi7)
          cr6(k) = br6 + tr
          ci6(k) = bi6 + ti
          cr7(k) = br6 - tr
          ci7(k) = bi6 - ti
  20    continue
  30  continue
      return
      end