1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
c
c-----------------------------------------------------------------------
c subroutine: fft842
c fast fourier transform for n=2**m
c complex input
c-----------------------------------------------------------------------
c
subroutine fft842 (in, n, x, y, ier)
c
c this program replaces the vector z=x+iy by its finite
c discrete, complex fourier transform if in=0. the inverse transform
c is calculated for in=1. it performs as many base
c 8 iterations as possible and then finishes with a base 4 iteration
c or a base 2 iteration if needed.
c
c the subroutine is called as subroutine fft842 (in,n,x,y).
c the integer n (a power of 2), the n real location array x, and
c the n real location array y must be supplied to the subroutine.
c
dimension x(*), y(*), l(15)
common /con2/ pi2, p7
equivalence (l15,l(1)), (l14,l(2)), (l13,l(3)), (l12,l(4)),
* (l11,l(5)), (l10,l(6)), (l9,l(7)), (l8,l(8)), (l7,l(9)),
* (l6,l(10)), (l5,l(11)), (l4,l(12)), (l3,l(13)), (l2,l(14)),
* (l1,l(15))
c
c
c iw is a machine dependent write device number
c
c+noao
c iw = i1mach(2)
ier = 0
c-noao
c
pi2 = 8.*atan(1.)
p7 = 1./sqrt(2.)
do 10 i=1,31
m = i
nt = 2**i
if (n.eq.nt) go to 20
10 continue
c+noao
c write (iw,9999)
c9999 format (35h n is not a power of two for fft842)
c stop
ier = 1
return
c-noao
20 n2pow = m
nthpo = n
fn = nthpo
if (in.eq.1) go to 40
do 30 i=1,nthpo
y(i) = -y(i)
30 continue
40 n8pow = n2pow/3
if (n8pow.eq.0) go to 60
c
c radix 8 passes,if any.
c
do 50 ipass=1,n8pow
nxtlt = 2**(n2pow-3*ipass)
lengt = 8*nxtlt
call r8tx(nxtlt, nthpo, lengt, x(1), x(nxtlt+1), x(2*nxtlt+1),
* x(3*nxtlt+1), x(4*nxtlt+1), x(5*nxtlt+1), x(6*nxtlt+1),
* x(7*nxtlt+1), y(1), y(nxtlt+1), y(2*nxtlt+1), y(3*nxtlt+1),
* y(4*nxtlt+1), y(5*nxtlt+1), y(6*nxtlt+1), y(7*nxtlt+1))
50 continue
c
c is there a four factor left
c
60 if (n2pow-3*n8pow-1) 90, 70, 80
c
c go through the base 2 iteration
c
c
70 call r2tx(nthpo, x(1), x(2), y(1), y(2))
go to 90
c
c go through the base 4 iteration
c
80 call r4tx(nthpo, x(1), x(2), x(3), x(4), y(1), y(2), y(3), y(4))
c
90 do 110 j=1,31
l(j) = 1
if (j-n2pow) 100, 100, 110
100 l(j) = 2**(n2pow+1-j)
110 continue
ij = 1
do 130 j1=1,l1
do 130 j2=j1,l2,l1
do 130 j3=j2,l3,l2
do 130 j4=j3,l4,l3
do 130 j5=j4,l5,l4
do 130 j6=j5,l6,l5
do 130 j7=j6,l7,l6
do 130 j8=j7,l8,l7
do 130 j9=j8,l9,l8
do 130 j10=j9,l10,l9
do 130 j11=j10,l11,l10
do 130 j12=j11,l12,l11
do 130 j13=j12,l13,l12
do 130 j14=j13,l14,l13
do 130 ji=j14,l15,l14
if (ij-ji) 120, 130, 130
120 r = x(ij)
x(ij) = x(ji)
x(ji) = r
fi = y(ij)
y(ij) = y(ji)
y(ji) = fi
130 ij = ij + 1
if (in.eq.1) go to 150
do 140 i=1,nthpo
y(i) = -y(i)
140 continue
go to 170
150 do 160 i=1,nthpo
x(i) = x(i)/fn
y(i) = y(i)/fn
160 continue
170 return
end
c
c-----------------------------------------------------------------------
c subroutine: r2tx
c radix 2 iteration subroutine
c-----------------------------------------------------------------------
c
subroutine r2tx(nthpo, cr0, cr1, ci0, ci1)
dimension cr0(2), cr1(2), ci0(2), ci1(2)
do 10 k=1,nthpo,2
r1 = cr0(k) + cr1(k)
cr1(k) = cr0(k) - cr1(k)
cr0(k) = r1
fi1 = ci0(k) + ci1(k)
ci1(k) = ci0(k) - ci1(k)
ci0(k) = fi1
10 continue
return
end
c
c-----------------------------------------------------------------------
c subroutine: r4tx
c radix 4 iteration subroutine
c-----------------------------------------------------------------------
c
subroutine r4tx(nthpo, cr0, cr1, cr2, cr3, ci0, ci1, ci2, ci3)
dimension cr0(2), cr1(2), cr2(2), cr3(2), ci0(2), ci1(2), ci2(2),
* ci3(2)
do 10 k=1,nthpo,4
r1 = cr0(k) + cr2(k)
r2 = cr0(k) - cr2(k)
r3 = cr1(k) + cr3(k)
r4 = cr1(k) - cr3(k)
fi1 = ci0(k) + ci2(k)
fi2 = ci0(k) - ci2(k)
fi3 = ci1(k) + ci3(k)
fi4 = ci1(k) - ci3(k)
cr0(k) = r1 + r3
ci0(k) = fi1 + fi3
cr1(k) = r1 - r3
ci1(k) = fi1 - fi3
cr2(k) = r2 - fi4
ci2(k) = fi2 + r4
cr3(k) = r2 + fi4
ci3(k) = fi2 - r4
10 continue
return
end
c
c-----------------------------------------------------------------------
c subroutine: r8tx
c radix 8 iteration subroutine
c-----------------------------------------------------------------------
c
subroutine r8tx(nxtlt, nthpo, lengt, cr0, cr1, cr2, cr3, cr4,
* cr5, cr6, cr7, ci0, ci1, ci2, ci3, ci4, ci5, ci6, ci7)
dimension cr0(2), cr1(2), cr2(2), cr3(2), cr4(2), cr5(2), cr6(2),
* cr7(2), ci1(2), ci2(2), ci3(2), ci4(2), ci5(2), ci6(2),
* ci7(2), ci0(2)
common /con2/ pi2, p7
c
scale = pi2/float(lengt)
do 30 j=1,nxtlt
arg = float(j-1)*scale
c1 = cos(arg)
s1 = sin(arg)
c2 = c1**2 - s1**2
s2 = c1*s1 + c1*s1
c3 = c1*c2 - s1*s2
s3 = c2*s1 + s2*c1
c4 = c2**2 - s2**2
s4 = c2*s2 + c2*s2
c5 = c2*c3 - s2*s3
s5 = c3*s2 + s3*c2
c6 = c3**2 - s3**2
s6 = c3*s3 + c3*s3
c7 = c3*c4 - s3*s4
s7 = c4*s3 + s4*c3
do 20 k=j,nthpo,lengt
ar0 = cr0(k) + cr4(k)
ar1 = cr1(k) + cr5(k)
ar2 = cr2(k) + cr6(k)
ar3 = cr3(k) + cr7(k)
ar4 = cr0(k) - cr4(k)
ar5 = cr1(k) - cr5(k)
ar6 = cr2(k) - cr6(k)
ar7 = cr3(k) - cr7(k)
ai0 = ci0(k) + ci4(k)
ai1 = ci1(k) + ci5(k)
ai2 = ci2(k) + ci6(k)
ai3 = ci3(k) + ci7(k)
ai4 = ci0(k) - ci4(k)
ai5 = ci1(k) - ci5(k)
ai6 = ci2(k) - ci6(k)
ai7 = ci3(k) - ci7(k)
br0 = ar0 + ar2
br1 = ar1 + ar3
br2 = ar0 - ar2
br3 = ar1 - ar3
br4 = ar4 - ai6
br5 = ar5 - ai7
br6 = ar4 + ai6
br7 = ar5 + ai7
bi0 = ai0 + ai2
bi1 = ai1 + ai3
bi2 = ai0 - ai2
bi3 = ai1 - ai3
bi4 = ai4 + ar6
bi5 = ai5 + ar7
bi6 = ai4 - ar6
bi7 = ai5 - ar7
cr0(k) = br0 + br1
ci0(k) = bi0 + bi1
if (j.le.1) go to 10
cr1(k) = c4*(br0-br1) - s4*(bi0-bi1)
ci1(k) = c4*(bi0-bi1) + s4*(br0-br1)
cr2(k) = c2*(br2-bi3) - s2*(bi2+br3)
ci2(k) = c2*(bi2+br3) + s2*(br2-bi3)
cr3(k) = c6*(br2+bi3) - s6*(bi2-br3)
ci3(k) = c6*(bi2-br3) + s6*(br2+bi3)
tr = p7*(br5-bi5)
ti = p7*(br5+bi5)
cr4(k) = c1*(br4+tr) - s1*(bi4+ti)
ci4(k) = c1*(bi4+ti) + s1*(br4+tr)
cr5(k) = c5*(br4-tr) - s5*(bi4-ti)
ci5(k) = c5*(bi4-ti) + s5*(br4-tr)
tr = -p7*(br7+bi7)
ti = p7*(br7-bi7)
cr6(k) = c3*(br6+tr) - s3*(bi6+ti)
ci6(k) = c3*(bi6+ti) + s3*(br6+tr)
cr7(k) = c7*(br6-tr) - s7*(bi6-ti)
ci7(k) = c7*(bi6-ti) + s7*(br6-tr)
go to 20
10 cr1(k) = br0 - br1
ci1(k) = bi0 - bi1
cr2(k) = br2 - bi3
ci2(k) = bi2 + br3
cr3(k) = br2 + bi3
ci3(k) = bi2 - br3
tr = p7*(br5-bi5)
ti = p7*(br5+bi5)
cr4(k) = br4 + tr
ci4(k) = bi4 + ti
cr5(k) = br4 - tr
ci5(k) = bi4 - ti
tr = -p7*(br7+bi7)
ti = p7*(br7-bi7)
cr6(k) = br6 + tr
ci6(k) = bi6 + ti
cr7(k) = br6 - tr
ci7(k) = bi6 - ti
20 continue
30 continue
return
end
|