diff options
author | Joe Hunkeler <jhunkeler@gmail.com> | 2015-08-11 16:51:37 -0400 |
---|---|---|
committer | Joe Hunkeler <jhunkeler@gmail.com> | 2015-08-11 16:51:37 -0400 |
commit | 40e5a5811c6ffce9b0974e93cdd927cbcf60c157 (patch) | |
tree | 4464880c571602d54f6ae114729bf62a89518057 /math/deboor/l2knts.f | |
download | iraf-osx-40e5a5811c6ffce9b0974e93cdd927cbcf60c157.tar.gz |
Repatch (from linux) of OSX IRAF
Diffstat (limited to 'math/deboor/l2knts.f')
-rw-r--r-- | math/deboor/l2knts.f | 33 |
1 files changed, 33 insertions, 0 deletions
diff --git a/math/deboor/l2knts.f b/math/deboor/l2knts.f new file mode 100644 index 00000000..5f11b1e4 --- /dev/null +++ b/math/deboor/l2knts.f @@ -0,0 +1,33 @@ + subroutine l2knts ( break, l, k, t, n ) +c from * a practical guide to splines * by c. de boor +c to be called in main program l 2 m a i n . +converts the breakpoint sequence b r e a k into a corresponding knot +c sequence t to allow the repr. of a pp function of order k with +c k-2 continuous derivatives as a spline of order k with knot +c sequence t . this means that +c t(1), ..., t(n+k) = break(1) k times, then break(i), i=2,...,l, each +c once, then break(l+1) k times . +c therefore, n = k-1 + l. +c +c****** i n p u t ****** +c k the order +c l the number of polynomial pieces +c break(1), ...,break(l+1) the breakpoint sequence +c +c****** o u t p u t ****** +c t(1),...,t(n+k) the knot sequence +c n the dimension of the corresp. spline space of order k . +c + integer k,l,n, i,km1 + real break(1),t(1) +c dimension break(l+1),t(n+k) + km1 = k - 1 + do 5 i=1,km1 + 5 t(i) = break(1) + do 6 i=1,l + 6 t(km1+i) = break(i) + n = km1 + l + do 7 i=1,k + 7 t(n+i) = break(l+1) + return + end |