aboutsummaryrefslogtreecommitdiff
path: root/math/slalib/rvlsrd.f
diff options
context:
space:
mode:
authorJoe Hunkeler <jhunkeler@gmail.com>2015-08-11 16:51:37 -0400
committerJoe Hunkeler <jhunkeler@gmail.com>2015-08-11 16:51:37 -0400
commit40e5a5811c6ffce9b0974e93cdd927cbcf60c157 (patch)
tree4464880c571602d54f6ae114729bf62a89518057 /math/slalib/rvlsrd.f
downloadiraf-osx-40e5a5811c6ffce9b0974e93cdd927cbcf60c157.tar.gz
Repatch (from linux) of OSX IRAF
Diffstat (limited to 'math/slalib/rvlsrd.f')
-rw-r--r--math/slalib/rvlsrd.f96
1 files changed, 96 insertions, 0 deletions
diff --git a/math/slalib/rvlsrd.f b/math/slalib/rvlsrd.f
new file mode 100644
index 00000000..720d6c9c
--- /dev/null
+++ b/math/slalib/rvlsrd.f
@@ -0,0 +1,96 @@
+ REAL FUNCTION slRVLD (R2000, D2000)
+*+
+* - - - - - - -
+* R V L D
+* - - - - - - -
+*
+* Velocity component in a given direction due to the Sun's motion
+* with respect to the dynamical Local Standard of Rest.
+*
+* (single precision)
+*
+* Given:
+* R2000,D2000 r J2000.0 mean RA,Dec (radians)
+*
+* Result:
+* Component of "peculiar" solar motion in direction R2000,D2000 (km/s)
+*
+* Sign convention:
+* The result is +ve when the Sun is receding from the given point on
+* the sky.
+*
+* Note: The Local Standard of Rest used here is the "dynamical" LSR,
+* a point in the vicinity of the Sun which is in a circular
+* orbit around the Galactic centre. The Sun's motion with
+* respect to the dynamical LSR is called the "peculiar" solar
+* motion.
+*
+* There is another type of LSR, called a "kinematical" LSR. A
+* kinematical LSR is the mean standard of rest of specified star
+* catalogues or stellar populations, and several slightly
+* different kinematical LSRs are in use. The Sun's motion with
+* respect to an agreed kinematical LSR is known as the "standard"
+* solar motion. To obtain a radial velocity correction with
+* respect to an adopted kinematical LSR use the routine slRVLK.
+*
+* Reference: Delhaye (1965), in "Stars and Stellar Systems", vol 5,
+* p73.
+*
+* Called:
+* slCS2C, slVDV
+*
+* P.T.Wallace Starlink 9 March 1994
+*
+* Copyright (C) 1995 Rutherford Appleton Laboratory
+*
+* License:
+* This program is free software; you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published by
+* the Free Software Foundation; either version 2 of the License, or
+* (at your option) any later version.
+*
+* This program is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+* GNU General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with this program (see SLA_CONDITIONS); if not, write to the
+* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+* Boston, MA 02110-1301 USA
+*
+* Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
+*-
+
+ IMPLICIT NONE
+
+ REAL R2000,D2000
+
+ REAL VA(3), VB(3)
+
+ REAL slVDV
+
+*
+* Peculiar solar motion from Delhaye 1965: in Galactic Cartesian
+* coordinates (+9,+12,+7) km/s. This corresponds to about 16.6 km/s
+* towards Galactic coordinates L2 = 53 deg, B2 = +25 deg, or RA,Dec
+* 17 49 58.7 +28 07 04 J2000.
+*
+* The solar motion is expressed here in the form of a J2000.0
+* equatorial Cartesian vector:
+*
+* VA(1) = X = -SPEED*COS(RA)*COS(DEC)
+* VA(2) = Y = -SPEED*SIN(RA)*COS(DEC)
+* VA(3) = Z = -SPEED*SIN(DEC)
+
+ DATA VA / +0.63823, +14.58542, -7.80116 /
+
+
+
+* Convert given J2000 RA,Dec to x,y,z
+ CALL slCS2C(R2000,D2000,VB)
+
+* Compute dot product with solar motion vector
+ slRVLD=slVDV(VA,VB)
+
+ END