aboutsummaryrefslogtreecommitdiff
path: root/pkg/utilities/nttools/trebin/tuiep3.f
diff options
context:
space:
mode:
authorJoe Hunkeler <jhunkeler@gmail.com>2015-08-11 16:51:37 -0400
committerJoe Hunkeler <jhunkeler@gmail.com>2015-08-11 16:51:37 -0400
commit40e5a5811c6ffce9b0974e93cdd927cbcf60c157 (patch)
tree4464880c571602d54f6ae114729bf62a89518057 /pkg/utilities/nttools/trebin/tuiep3.f
downloadiraf-osx-40e5a5811c6ffce9b0974e93cdd927cbcf60c157.tar.gz
Repatch (from linux) of OSX IRAF
Diffstat (limited to 'pkg/utilities/nttools/trebin/tuiep3.f')
-rw-r--r--pkg/utilities/nttools/trebin/tuiep3.f71
1 files changed, 71 insertions, 0 deletions
diff --git a/pkg/utilities/nttools/trebin/tuiep3.f b/pkg/utilities/nttools/trebin/tuiep3.f
new file mode 100644
index 00000000..58f81a99
--- /dev/null
+++ b/pkg/utilities/nttools/trebin/tuiep3.f
@@ -0,0 +1,71 @@
+ subroutine tuiep3 (xa, ya, x, y, dy)
+C
+C Evaluate a cubic polynomial interpolation function at X.
+C xa(klo) <= x <= xa(klo+1)
+C This routine was copied with slight modifications from the POLINT
+C subroutine in Numerical Recipes by Press, Flannery, Teukolsky and
+C Vetterling.
+C
+C XA i: array of four independent-variable values
+C YA i: array of four dependent-variable values
+C X i: the independent variable
+C Y o: the result of interpolations
+C DY o: an estimate of the error of interpolation
+C
+CH Phil Hodge, 18-Apr-1988 Subroutine copied from Numerical Recipes POLINT.
+C
+ double precision xa(4), ya(4), x, y, dy
+C--
+ integer n
+C four-point interpolation
+ parameter (n = 4)
+
+ double precision c(n), d(n), dif, dift, den
+ double precision ho, hp, w
+ integer i, m, ns
+
+ do 10 i = 1, n
+ if (x .eq. xa(i)) then
+ y = ya(i)
+ return
+ endif
+ 10 continue
+
+ ns = 1
+ dif = abs (x - xa(1))
+
+ do 20 i = 1, n
+ dift = abs (x - xa(i))
+ if (dift .lt. dif) then
+ ns = i
+ dif = dift
+ endif
+ c(i) = ya(i)
+ d(i) = ya(i)
+ 20 continue
+
+ y = ya(ns)
+ ns = ns - 1
+
+ do 40 m = 1, n-1
+
+ do 30 i = 1, n-m
+ ho = xa(i) - x
+ hp = xa(i+m) - x
+ w = c(i+1) - d(i)
+ den = w / (ho - hp)
+ d(i) = hp * den
+ c(i) = ho * den
+ 30 continue
+
+ if (2*ns .lt. n-m) then
+ dy = c(ns+1)
+ else
+ dy = d(ns)
+ ns = ns - 1
+ endif
+ y = y + dy
+ 40 continue
+
+ return
+ end