diff options
Diffstat (limited to 'math/minpack/r1mpyq.f')
-rw-r--r-- | math/minpack/r1mpyq.f | 92 |
1 files changed, 92 insertions, 0 deletions
diff --git a/math/minpack/r1mpyq.f b/math/minpack/r1mpyq.f new file mode 100644 index 00000000..ec99b96c --- /dev/null +++ b/math/minpack/r1mpyq.f @@ -0,0 +1,92 @@ + subroutine r1mpyq(m,n,a,lda,v,w) + integer m,n,lda + double precision a(lda,n),v(n),w(n) +c ********** +c +c subroutine r1mpyq +c +c given an m by n matrix a, this subroutine computes a*q where +c q is the product of 2*(n - 1) transformations +c +c gv(n-1)*...*gv(1)*gw(1)*...*gw(n-1) +c +c and gv(i), gw(i) are givens rotations in the (i,n) plane which +c eliminate elements in the i-th and n-th planes, respectively. +c q itself is not given, rather the information to recover the +c gv, gw rotations is supplied. +c +c the subroutine statement is +c +c subroutine r1mpyq(m,n,a,lda,v,w) +c +c where +c +c m is a positive integer input variable set to the number +c of rows of a. +c +c n is a positive integer input variable set to the number +c of columns of a. +c +c a is an m by n array. on input a must contain the matrix +c to be postmultiplied by the orthogonal matrix q +c described above. on output a*q has replaced a. +c +c lda is a positive integer input variable not less than m +c which specifies the leading dimension of the array a. +c +c v is an input array of length n. v(i) must contain the +c information necessary to recover the givens rotation gv(i) +c described above. +c +c w is an input array of length n. w(i) must contain the +c information necessary to recover the givens rotation gw(i) +c described above. +c +c subroutines called +c +c fortran-supplied ... dabs,dsqrt +c +c argonne national laboratory. minpack project. march 1980. +c burton s. garbow, kenneth e. hillstrom, jorge j. more +c +c ********** + integer i,j,nmj,nm1 + double precision cos,one,sin,temp + data one /1.0d0/ +c +c apply the first set of givens rotations to a. +c + nm1 = n - 1 + if (nm1 .lt. 1) go to 50 + do 20 nmj = 1, nm1 + j = n - nmj + if (dabs(v(j)) .gt. one) cos = one/v(j) + if (dabs(v(j)) .gt. one) sin = dsqrt(one-cos**2) + if (dabs(v(j)) .le. one) sin = v(j) + if (dabs(v(j)) .le. one) cos = dsqrt(one-sin**2) + do 10 i = 1, m + temp = cos*a(i,j) - sin*a(i,n) + a(i,n) = sin*a(i,j) + cos*a(i,n) + a(i,j) = temp + 10 continue + 20 continue +c +c apply the second set of givens rotations to a. +c + do 40 j = 1, nm1 + if (dabs(w(j)) .gt. one) cos = one/w(j) + if (dabs(w(j)) .gt. one) sin = dsqrt(one-cos**2) + if (dabs(w(j)) .le. one) sin = w(j) + if (dabs(w(j)) .le. one) cos = dsqrt(one-sin**2) + do 30 i = 1, m + temp = cos*a(i,j) + sin*a(i,n) + a(i,n) = -sin*a(i,j) + cos*a(i,n) + a(i,j) = temp + 30 continue + 40 continue + 50 continue + return +c +c last card of subroutine r1mpyq. +c + end |