1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
# GS_BPOL -- Procedure to evaluate all the non-zero polynomial functions for
# a set of points and given order.
procedure rgs_bpol (x, npts, order, k1, k2, basis)
real x[npts] # array of data points
int npts # number of points
int order # order of polynomial, order = 1, constant
real k1, k2 # normalizing constants
real basis[ARB] # basis functions
int bptr, k
begin
bptr = 1
do k = 1, order {
if (k == 1)
call amovkr (1.0, basis, npts)
else if (k == 2)
call amovr (x, basis[bptr], npts)
else
call amulr (basis[bptr-npts], x, basis[bptr], npts)
bptr = bptr + npts
}
end
# GS_BCHEB -- Procedure to evaluate all the non-zero Chebyshev functions for
# a set of points and given order.
procedure rgs_bcheb (x, npts, order, k1, k2, basis)
real x[npts] # array of data points
int npts # number of points
int order # order of polynomial, order = 1, constant
real k1, k2 # normalizing constants
real basis[ARB] # basis functions
int k, bptr
begin
bptr = 1
do k = 1, order {
if (k == 1)
call amovkr (1.0, basis, npts)
else if (k == 2)
call altar (x, basis[bptr], npts, k1, k2)
else {
call amulr (basis[1+npts], basis[bptr-npts], basis[bptr],
npts)
call amulkr (basis[bptr], 2.0, basis[bptr], npts)
call asubr (basis[bptr], basis[bptr-2*npts], basis[bptr], npts)
}
bptr = bptr + npts
}
end
# GS_BLEG -- Procedure to evaluate all the non zero Legendre function
# for a given order and set of points.
procedure rgs_bleg (x, npts, order, k1, k2, basis)
real x[npts] # number of data points
int npts # number of points
int order # order of polynomial, 1 is a constant
real k1, k2 # normalizing constants
real basis[ARB] # array of basis functions
int k, bptr
real ri, ri1, ri2
begin
bptr = 1
do k = 1, order {
if (k == 1)
call amovkr (1.0, basis, npts)
else if (k == 2)
call altar (x, basis[bptr], npts, k1, k2)
else {
ri = k
ri1 = (2. * ri - 3.) / (ri - 1.)
ri2 = - (ri - 2.) / (ri - 1.)
call amulr (basis[1+npts], basis[bptr-npts], basis[bptr],
npts)
call awsur (basis[bptr], basis[bptr-2*npts],
basis[bptr], npts, ri1, ri2)
}
bptr = bptr + npts
}
end
|