aboutsummaryrefslogtreecommitdiff
path: root/math/gsurfit/gs_f1deval.gx
blob: 17981daf040f40de2099ad1667f112d8f6a9d82b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

# GS_1DEVPOLY -- Procedure to evaulate a 1D polynomial

procedure $tgs_1devpoly (coeff, x, yfit, npts, order, k1, k2)

PIXEL	coeff[ARB]		# EV array of coefficients
PIXEL	x[npts]			# x values of points to be evaluated
PIXEL	yfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	order			# order of the polynomial, 1 = constant
PIXEL	k1, k2			# normalizing constants

int	i
pointer	sp, temp

begin
	# fit a constant
	call amovk$t (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	call altm$t (x, yfit, npts, coeff[2], coeff[1])
	if (order == 2)
	    return

	call smark (sp)
	$if (datatype == r)
	call salloc (temp, npts, TY_REAL)
	$else
	call salloc (temp, npts, TY_DOUBLE)
	$endif

	# accumulate the output vector
	call amov$t (x, Mem$t[temp], npts)
	do i = 3, order {
	    call amul$t (Mem$t[temp], x, Mem$t[temp], npts)
	    $if (datatype == r)
	    call awsur (yfit, Memr[temp], yfit, npts, 1.0, coeff[i])
	    $else
	    call awsud (yfit, Memd[temp], yfit, npts, 1.0d0, coeff[i])
	    $endif
	}

	call sfree (sp)

end

# GS_1DEVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated. 

procedure $tgs_1devcheb (coeff, x, yfit, npts, order, k1, k2)

PIXEL	coeff[ARB]		# EV array of coefficients
PIXEL	x[npts]			# x values of points to be evaluated
PIXEL	yfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	order			# order of the polynomial, 1 = constant
PIXEL	k1, k2			# normalizing constants

int	i
pointer	sx, pn, pnm1, pnm2
pointer sp
PIXEL	c1, c2

begin
	# fit a constant
	call amovk$t (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	c1 = k2 * coeff[2]
	c2 = c1 * k1 + coeff[1]
	call altm$t (x, yfit, npts, c1, c2)
	if (order == 2)
	    return

	# allocate temporary space
	call smark (sp)
	$if (datatype == r)
	call salloc (sx, npts, TY_REAL)
	call salloc (pn, npts, TY_REAL)
	call salloc (pnm1, npts, TY_REAL)
	call salloc (pnm2, npts, TY_REAL)
	$else
	call salloc (sx, npts, TY_DOUBLE)
	call salloc (pn, npts, TY_DOUBLE)
	call salloc (pnm1, npts, TY_DOUBLE)
	call salloc (pnm2, npts, TY_DOUBLE)
	$endif

	# a higher order polynomial
	$if (datatype == r)
	call amovkr (1., Memr[pnm2], npts)
	$else
	call amovkd (1.0d0, Memd[pnm2], npts)
	$endif
	call alta$t (x, Mem$t[sx], npts, k1, k2)
	call amov$t (Mem$t[sx], Mem$t[pnm1], npts)
	call amulk$t (Mem$t[sx], 2$f, Mem$t[sx], npts)
	do i = 3, order {
	    call amul$t (Mem$t[sx], Mem$t[pnm1], Mem$t[pn], npts)
	    call asub$t (Mem$t[pn], Mem$t[pnm2], Mem$t[pn], npts)
	    if (i < order) {
	        call amov$t (Mem$t[pnm1], Mem$t[pnm2], npts)
	        call amov$t (Mem$t[pn], Mem$t[pnm1], npts)
	    }
	    call amulk$t (Mem$t[pn], coeff[i], Mem$t[pn], npts)
	    call aadd$t (yfit, Mem$t[pn], yfit, npts)
	}

	# free temporary space
	call sfree (sp)

end


# GS_1DEVLEG -- Procedure to evaluate a Legendre polynomial assuming that
# the coefficients have been calculated. 

procedure $tgs_1devleg (coeff, x, yfit, npts, order, k1, k2)

PIXEL	coeff[ARB]		# EV array of coefficients
PIXEL	x[npts]			# x values of points to be evaluated
PIXEL	yfit[npts]		# the fitted points
int	npts			# number of data points
int	order			# order of the polynomial, 1 = constant
PIXEL	k1, k2			# normalizing constants

int	i
pointer	sx, pn, pnm1, pnm2
pointer	sp
PIXEL	ri, ri1, ri2

begin
	# fit a constant
	call amovk$t (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	ri1 = k2 * coeff[2]
	ri2 = ri1 * k1 + coeff[1]
	call altm$t (x, yfit, npts, ri1, ri2)
	if (order == 2)
	    return

	# allocate temporary space
	call smark (sp)
	$if (datatype == r)
	call salloc (sx, npts, TY_REAL)
	call salloc (pn, npts, TY_REAL)
	call salloc (pnm1, npts, TY_REAL)
	call salloc (pnm2, npts, TY_REAL)
	$else
	call salloc (sx, npts, TY_DOUBLE)
	call salloc (pn, npts, TY_DOUBLE)
	call salloc (pnm1, npts, TY_DOUBLE)
	call salloc (pnm2, npts, TY_DOUBLE)
	$endif

	# a higher order polynomial
	$if (datatype == r)
	call amovkr (1., Memr[pnm2], npts)
	$else
	call amovkd (1.0d0, Memd[pnm2], npts)
	$endif
	call alta$t (x, Mem$t[sx], npts, k1, k2)
	call amov$t (Mem$t[sx], Mem$t[pnm1], npts)
	do i = 3, order {
	    ri = i
	    ri1 = (2. * ri - 3.) / (ri - 1.)
	    ri2 = - (ri - 2.) / (ri - 1.)
	    call amul$t (Mem$t[sx], Mem$t[pnm1], Mem$t[pn], npts)
	    call awsu$t (Mem$t[pn], Mem$t[pnm2], Mem$t[pn], npts, ri1, ri2)
	    if (i < order) {
	        call amov$t (Mem$t[pnm1], Mem$t[pnm2], npts)
	        call amov$t (Mem$t[pn], Mem$t[pnm1], npts)
	    }
	    call amulk$t (Mem$t[pn], coeff[i], Mem$t[pn], npts)
	    call aadd$t (yfit, Mem$t[pn], yfit, npts)
	}

	# free temporary space
	call sfree (sp)

end