aboutsummaryrefslogtreecommitdiff
path: root/math/gsurfit/gs_f1devalr.x
blob: 5fdab143b5cd99dcf63202c9eaca446a6eaa32b0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

# GS_1DEVPOLY -- Procedure to evaulate a 1D polynomial

procedure rgs_1devpoly (coeff, x, yfit, npts, order, k1, k2)

real	coeff[ARB]		# EV array of coefficients
real	x[npts]			# x values of points to be evaluated
real	yfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	order			# order of the polynomial, 1 = constant
real	k1, k2			# normalizing constants

int	i
pointer	sp, temp

begin
	# fit a constant
	call amovkr (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	call altmr (x, yfit, npts, coeff[2], coeff[1])
	if (order == 2)
	    return

	call smark (sp)
	call salloc (temp, npts, TY_REAL)

	# accumulate the output vector
	call amovr (x, Memr[temp], npts)
	do i = 3, order {
	    call amulr (Memr[temp], x, Memr[temp], npts)
	    call awsur (yfit, Memr[temp], yfit, npts, 1.0, coeff[i])
	}

	call sfree (sp)

end

# GS_1DEVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated. 

procedure rgs_1devcheb (coeff, x, yfit, npts, order, k1, k2)

real	coeff[ARB]		# EV array of coefficients
real	x[npts]			# x values of points to be evaluated
real	yfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	order			# order of the polynomial, 1 = constant
real	k1, k2			# normalizing constants

int	i
pointer	sx, pn, pnm1, pnm2
pointer sp
real	c1, c2

begin
	# fit a constant
	call amovkr (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	c1 = k2 * coeff[2]
	c2 = c1 * k1 + coeff[1]
	call altmr (x, yfit, npts, c1, c2)
	if (order == 2)
	    return

	# allocate temporary space
	call smark (sp)
	call salloc (sx, npts, TY_REAL)
	call salloc (pn, npts, TY_REAL)
	call salloc (pnm1, npts, TY_REAL)
	call salloc (pnm2, npts, TY_REAL)

	# a higher order polynomial
	call amovkr (1., Memr[pnm2], npts)
	call altar (x, Memr[sx], npts, k1, k2)
	call amovr (Memr[sx], Memr[pnm1], npts)
	call amulkr (Memr[sx], 2.0, Memr[sx], npts)
	do i = 3, order {
	    call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts)
	    call asubr (Memr[pn], Memr[pnm2], Memr[pn], npts)
	    if (i < order) {
	        call amovr (Memr[pnm1], Memr[pnm2], npts)
	        call amovr (Memr[pn], Memr[pnm1], npts)
	    }
	    call amulkr (Memr[pn], coeff[i], Memr[pn], npts)
	    call aaddr (yfit, Memr[pn], yfit, npts)
	}

	# free temporary space
	call sfree (sp)

end


# GS_1DEVLEG -- Procedure to evaluate a Legendre polynomial assuming that
# the coefficients have been calculated. 

procedure rgs_1devleg (coeff, x, yfit, npts, order, k1, k2)

real	coeff[ARB]		# EV array of coefficients
real	x[npts]			# x values of points to be evaluated
real	yfit[npts]		# the fitted points
int	npts			# number of data points
int	order			# order of the polynomial, 1 = constant
real	k1, k2			# normalizing constants

int	i
pointer	sx, pn, pnm1, pnm2
pointer	sp
real	ri, ri1, ri2

begin
	# fit a constant
	call amovkr (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	ri1 = k2 * coeff[2]
	ri2 = ri1 * k1 + coeff[1]
	call altmr (x, yfit, npts, ri1, ri2)
	if (order == 2)
	    return

	# allocate temporary space
	call smark (sp)
	call salloc (sx, npts, TY_REAL)
	call salloc (pn, npts, TY_REAL)
	call salloc (pnm1, npts, TY_REAL)
	call salloc (pnm2, npts, TY_REAL)

	# a higher order polynomial
	call amovkr (1., Memr[pnm2], npts)
	call altar (x, Memr[sx], npts, k1, k2)
	call amovr (Memr[sx], Memr[pnm1], npts)
	do i = 3, order {
	    ri = i
	    ri1 = (2. * ri - 3.) / (ri - 1.)
	    ri2 = - (ri - 2.) / (ri - 1.)
	    call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts)
	    call awsur (Memr[pn], Memr[pnm2], Memr[pn], npts, ri1, ri2)
	    if (i < order) {
	        call amovr (Memr[pnm1], Memr[pnm2], npts)
	        call amovr (Memr[pn], Memr[pnm1], npts)
	    }
	    call amulkr (Memr[pn], coeff[i], Memr[pn], npts)
	    call aaddr (yfit, Memr[pn], yfit, npts)
	}

	# free temporary space
	call sfree (sp)

end