1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <math.h>
include <math/iminterp.h>
# II_GRNEAREST -- Procedure to evaluate the nearest neighbour interpolant on
# a rectangular grid. The procedure assumes that 1 <= x <= nxpix and
# that 1 <= y <= nypix. The x and y vectors must be sorted in increasing
# value of x and y such that x[i] < x[i+1] and y[i] < y[i+1]. The routine
# outputs a grid of nxpix by nypix points using the coeff array where
# coeff[1+first_point] = datain[1,1]
procedure ii_grnearest (coeff, first_point, len_coeff, x, y, zfit, nxpts,
nypts, len_zfit)
real coeff[ARB] # 1D coefficient array
int first_point # offset of first data point
int len_coeff # row length of coeff
real x[nxpts] # array of x values
real y[nypts] # array of y values
real zfit[len_zfit,ARB] # array of interpolatedvalues
int nxpts # number of x values
int nypts # number of y values
int len_zfit # row length of zfit
int ny
int index
int i, j
pointer sp, nx
errchk smark, salloc, sfree
begin
call smark (sp)
call salloc (nx, nxpts, TY_INT)
# calculate the nearest x
do i = 1, nxpts
Memi[nx+i-1] = x[i] + 0.5
# loop over the rows
do j = 1, nypts {
# calculate pointer to the ny-th row of data
ny = y[j] + 0.5
index = first_point + (ny - 1) * len_coeff
# loop over the columns
do i = 1, nxpts
zfit[i,j] = coeff[index + Memi[nx+i-1]]
}
call sfree (sp)
end
# II_GRLINEAR -- Procedure to evaluate the bilinear interpolant
# on a rectangular grid. The procedure assumes that 1 <= x <= nxpix and that
# 1 <= y <= nypix. The x and y vectors are assumed to be sorted in increasing
# order of x and y such that x[i] < x[i+1] and y[i] < y[i+1]. The routine
# produces a grid of nxpix * nypix evaluated points using the coeff array
# where coeff[1+first_point] = datain[1,1].
procedure ii_grlinear (coeff, first_point, len_coeff, x, y, zfit, nxpts,
nypts, len_zfit)
real coeff[ARB] # 1D array of coefficients
int first_point # offset of first data point
int len_coeff # row length of coeff
real x[nxpts] # array of x values
real y[nypts] # array of y values
real zfit[len_zfit,ARB] # array of interpolated values
int nxpts # number of x values
int nypts # number of y values
int len_zfit # row length of zfit
int i, j, ny
int nymin, nymax, nylines
int row_index, xindex
pointer sp, nx, sx, tx, work, lbuf1, lbuf2
real sy, ty
errchk smark, salloc, sfree
begin
# calculate the x and y limits
nymin = y[1]
nymax = int (y[nypts]) + 1
nylines = nymax - nymin + 1
# allocate storage for work array
call smark (sp)
call salloc (nx, nxpts, TY_INT)
call salloc (sx, nxpts, TY_REAL)
call salloc (tx, nxpts, TY_REAL)
call salloc (work, nxpts * nylines, TY_REAL)
# initialize
call achtri (x, Memi[nx], nxpts)
do i = 1, nxpts {
Memr[sx+i-1] = x[i] - Memi[nx+i-1]
Memr[tx+i-1] = 1. - Memr[sx+i-1]
}
# for each value of y interpolate in x and store in work array
lbuf1 = work
do j = 1, nylines {
# define pointer to appropriate row
row_index = first_point + (j + nymin - 2) * len_coeff
# interpolate in x at each y
do i = 1, nxpts {
xindex = row_index + Memi[nx+i-1]
Memr[lbuf1+i-1] = Memr[tx+i-1] * coeff[xindex] +
Memr[sx+i-1] * coeff[xindex+1]
}
lbuf1 = lbuf1 + nxpts
}
# at each x interpolate in y and store in temporary work array
do j = 1, nypts {
ny = y[j]
sy = y[j] - ny
ty = 1. - sy
lbuf1 = work + nxpts * (ny - nymin)
lbuf2 = lbuf1 + nxpts
call awsur (Memr[lbuf1], Memr[lbuf2], zfit[1,j], nxpts,
ty, sy)
}
# deallocate work space
call sfree (sp)
end
# II_GRPOLY3 -- Procedure to evaluate the bicubic polynomial interpolant
# on a rectangular grid. The points to be evaluated are assumed
# to lie in the range 1 <= x <= nxpix and 1 <= y <= nypix. The x and y vectors
# are assumed to be sorted in increasing order of x and y such that
# x[i] < x[i+1] and y[i] < y[i+1]. The interpolation is done using
# Everett's central difference formula and separation of variables
# and assuming that coeff[1+first_point] = datain[1,1].
procedure ii_grpoly3 (coeff, first_point, len_coeff, x, y, zfit, nxpts, nypts,
len_zfit)
real coeff[ARB] # 1D array of coefficients
int first_point # offset of first data point
int len_coeff # length of row of coeffcient
real x[nxpts] # array of x values
real y[nypts] # array of y values
real zfit[len_zfit,ARB] # array of interpolatedvalues
int nxpts # number of x points
int nypts # number of y points
int len_zfit # row length of zfit
int nymin, nymax, nylines
int nxold, nyold
int row_index, xindex
int i, j, ny
pointer sp, nx, sx, sx2m1, tx, tx2m1, work
pointer lbuf, lbufp1, lbufp2, lbufm1
real cd20x, cd21x, cd20y, cd21y
real sy, ty, sy2m1, ty2m1
errchk smark, salloc, sfree
begin
# find y limits
nymin = int (y[1]) - 1
nymax = int (y[nypts]) + 2
nylines = nymax - nymin + 1
# allocate work space
call smark (sp)
call salloc (nx, nxpts, TY_INT)
call salloc (sx, nxpts, TY_REAL)
call salloc (sx2m1, nxpts, TY_REAL)
call salloc (tx, nxpts, TY_REAL)
call salloc (tx2m1, nxpts, TY_REAL)
call salloc (work, nxpts * nylines, TY_REAL)
# initialize
call achtri (x, Memi[nx], nxpts)
do i = 1, nxpts {
Memr[sx+i-1] = x[i] - Memi[nx+i-1]
Memr[sx2m1+i-1] = Memr[sx+i-1] * Memr[sx+i-1] - 1.
Memr[tx+i-1] = 1. - Memr[sx+i-1]
Memr[tx2m1+i-1] = Memr[tx+i-1] * Memr[tx+i-1] - 1.
}
# for each value of y interpolate in x
lbuf = work
do j = 1, nylines {
# calculate pointer to a row
row_index = first_point + (j + nymin - 2) * len_coeff
# interpolate in x at each y
nxold = -1
do i = 1, nxpts {
xindex= row_index + Memi[nx+i-1]
if (Memi[nx+i-1] != nxold) {
#cd20x = 1./6. * (coeff[xindex+1] - 2. * coeff[xindex] +
#coeff[xindex-1])
#cd21x = 1./6. * (coeff[xindex+2] - 2. * coeff[xindex+1] +
#coeff[xindex])
cd20x = (coeff[xindex+1] - 2. * coeff[xindex] +
coeff[xindex-1]) / 6.
cd21x = (coeff[xindex+2] - 2. * coeff[xindex+1] +
coeff[xindex]) / 6.0
}
Memr[lbuf+i-1] = Memr[sx+i-1] * (coeff[xindex+1] +
Memr[sx2m1+i-1] * cd21x) +
Memr[tx+i-1] * (coeff[xindex] +
Memr[tx2m1+i-1] * cd20x)
nxold = Memi[nx+i-1]
}
lbuf = lbuf + nxpts
}
# interpolate in y at each x
nyold = -1
do j = 1, nypts {
ny = y[j]
sy = y[j] - ny
ty = 1. - sy
sy2m1 = sy ** 2 - 1.
ty2m1 = ty ** 2 - 1.
lbuf = work + nxpts * (ny - nymin)
lbufm1 = lbuf - nxpts
lbufp1 = lbuf + nxpts
lbufp2 = lbufp1 + nxpts
do i = 1, nxpts {
# calculate central differences in y
#if (nyold != ny) {
#cd20y = 1./6. * (Memr[lbufp1+i-1] - 2. * Memr[lbuf+i-1] +
#Memr[lbufm1+i-1])
#cd21y = 1./6. * (Memr[lbufp2+i-1] - 2. *
#Memr[lbufp1+i-1] + Memr[lbuf+i-1])
cd20y = (Memr[lbufp1+i-1] - 2. * Memr[lbuf+i-1] +
Memr[lbufm1+i-1]) / 6.0
cd21y = (Memr[lbufp2+i-1] - 2. * Memr[lbufp1+i-1] +
Memr[lbuf+i-1]) / 6.0
#}
# interpolate in y
zfit[i,j] = sy * (Memr[lbufp1+i-1] + sy2m1 * cd21y) +
ty * (Memr[lbuf+i-1] + ty2m1 * cd20y)
}
#nyold = ny
}
# free work space
call sfree (sp)
end
# II_GRPOLY5 -- Procedure to evaluate the biquintic polynomial interpolant
# on a rectangular grid. The routine assumes that 1 <= x <= nxpix and
# 1 <= y <= nypix. The vectors x and y are assumed to be sorted in
# increasing order such that x[i] < x[i+1] and y[i] < y[i+1]. The
# interpolation is done using Everett's interpolation formula and
# separation of variables and assuming that coeff[1+first_point] =
# datain[1,1].
procedure ii_grpoly5 (coeff, first_point, len_coeff, x, y, zfit, nxpts,
nypts, len_zfit)
real coeff[ARB] # 1D array of coefficients
int first_point # offset of first data point
int len_coeff # row length of coeff
real x[nxpts] # array of x values
real y[nypts] # array of y values
real zfit[len_zfit,ARB] # array of fitted values
int nxpts # number of x points
int nypts # number of y points
int len_zfit # row length of zfit
int nymax, nymin, nylines, nxold, nyold
int row_index, xindex
int i, j, ny
pointer sp, nx, sx, tx, sx2m1, sx2m4, tx2m1, tx2m4, work
pointer lbuf, lbufp1, lbufp2, lbufp3, lbufm1, lbufm2
real cd20x, cd21x, cd40x, cd41x
real cd20y, cd21y, cd40y, cd41y
real sy, ty, sy2m1, sy2m4, ty2m1, ty2m4
errchk smark, salloc, sfree
begin
# find the y limits
nymin = int (y[1]) - 2
nymax = int (y[nypts]) + 3
nylines = nymax - nymin + 1
# allocate space
call smark (sp)
call salloc (nx, nxpts, TY_INT)
call salloc (sx, nxpts, TY_REAL)
call salloc (sx2m1, nxpts, TY_REAL)
call salloc (sx2m4, nxpts, TY_REAL)
call salloc (tx, nxpts, TY_REAL)
call salloc (tx2m1, nxpts, TY_REAL)
call salloc (tx2m4, nxpts, TY_REAL)
call salloc (work, nxpts * nylines, TY_REAL)
# intialize
call achtri (x, Memi[nx], nxpts)
do i = 1, nxpts {
Memr[sx+i-1] = x[i] - Memi[nx+i-1]
Memr[sx2m1+i-1] = Memr[sx+i-1] ** 2 - 1.
Memr[sx2m4+i-1] = Memr[sx2m1+i-1] - 3.
Memr[tx+i-1] = 1. - Memr[sx+i-1]
Memr[tx2m1+i-1] = Memr[tx+i-1] ** 2 - 1.
Memr[tx2m4+i-1] = Memr[tx2m1+i-1] - 3.
}
# for each value of y interpolate in x
lbuf = work
do j = 1, nylines {
# calculate pointer to a row
row_index = first_point + (j + nymin - 2) * len_coeff
# interpolate in x at each y
nxold = -1
do i = 1, nxpts {
xindex = row_index + Memi[nx+i-1]
if (Memi[nx+i-1] != nxold) {
#cd20x = 1./6. * (coeff[xindex+1] - 2. * coeff[xindex] +
#coeff[xindex-1])
#cd21x = 1./6. * (coeff[xindex+2] - 2. * coeff[xindex+1] +
#coeff[xindex])
cd20x = (coeff[xindex+1] - 2. * coeff[xindex] +
coeff[xindex-1]) / 6.0
cd21x = (coeff[xindex+2] - 2. * coeff[xindex+1] +
coeff[xindex]) / 6.0
#cd40x = 1./120. * (coeff[xindex-2] - 4. * coeff[xindex-1] +
#6. * coeff[xindex] - 4. * coeff[xindex+1] +
#coeff[xindex+2])
#cd41x = 1./120. * (coeff[xindex-1] - 4. * coeff[xindex] +
#6. * coeff[xindex+1] - 4. * coeff[xindex+2] +
#coeff[xindex+3])
cd40x = (coeff[xindex-2] - 4. * coeff[xindex-1] +
6. * coeff[xindex] - 4. * coeff[xindex+1] +
coeff[xindex+2]) / 120.0
cd41x = (coeff[xindex-1] - 4. * coeff[xindex] +
6. * coeff[xindex+1] - 4. * coeff[xindex+2] +
coeff[xindex+3]) / 120.0
}
Memr[lbuf+i-1] = Memr[sx+i-1] * (coeff[xindex+1] +
Memr[sx2m1+i-1] * (cd21x +
Memr[sx2m4+i-1] * cd41x)) +
Memr[tx+i-1] * (coeff[xindex] +
Memr[tx2m1+i-1] * (cd20x +
Memr[tx2m4+i-1] * cd40x))
nxold = Memi[nx+i-1]
}
lbuf = lbuf + nxpts
}
# at each x interpolate in y
nyold = -1
do j = 1, nypts {
ny = y[j]
sy = y[j] - ny
sy2m1 = sy ** 2 - 1.
sy2m4 = sy2m1 - 3.
ty = 1. - sy
ty2m1 = ty ** 2 - 1.
ty2m4 = ty2m1 - 3.
lbuf = work + nxpts * (ny - nymin)
lbufp1 = lbuf + nxpts
lbufp2 = lbufp1 + nxpts
lbufp3 = lbufp2 + nxpts
lbufm1 = lbuf - nxpts
lbufm2 = lbufm1 - nxpts
do i = 1, nxpts {
# calculate central differences
#if (nyold != ny) {
#cd20y = 1./6. * (Memr[lbufp1+i-1] - 2. * Memr[lbuf+i-1] +
#Memr[lbufm1+i-1])
#cd21y = 1./6. * (Memr[lbufp2+i-1] - 2. *
#Memr[lbufp1+i-1] + Memr[lbuf+i-1])
cd20y = (Memr[lbufp1+i-1] - 2. * Memr[lbuf+i-1] +
Memr[lbufm1+i-1]) / 6.
cd21y = (Memr[lbufp2+i-1] - 2. *
Memr[lbufp1+i-1] + Memr[lbuf+i-1]) / 6.
#cd40y = 1./120. * (Memr[lbufm2+i-1] -
#4. * Memr[lbufm1+i-1] + 6. * Memr[lbuf+i-1] -
#4. * Memr[lbufp1+i-1] + Memr[lbufp2+i-1])
#cd41y = 1./120. * (Memr[lbufm1+i-1] - 4. *
#Memr[lbuf+i-1] + 6. * Memr[lbufp1+i-1] - 4. *
#Memr[lbufp2+i-1] + Memr[lbufp3+i-1])
cd40y = (Memr[lbufm2+i-1] -
4. * Memr[lbufm1+i-1] + 6. * Memr[lbuf+i-1] -
4. * Memr[lbufp1+i-1] + Memr[lbufp2+i-1]) / 120.
cd41y = (Memr[lbufm1+i-1] - 4. *
Memr[lbuf+i-1] + 6. * Memr[lbufp1+i-1] - 4. *
Memr[lbufp2+i-1] + Memr[lbufp3+i-1]) / 120.0
#}
# interpolate in y
zfit[i,j] = sy * (Memr[lbufp1+i-1] + sy2m1 *
(cd21y + sy2m4 * cd41y)) +
ty * (Memr[lbuf+i-1] + ty2m1 *
(cd20y + ty2m4 * cd40y))
}
#nyold = ny
}
# release work space
call sfree (sp)
end
# II_GRSPLINE3 -- Procedure to evaluate the bicubic spline interpolant
# on a rectangular grid. The program assumes that 1 <= x <= nxpix and
# 1 <= y <= nypix. The routine assumes that x and y vectors are sorted
# such that x[i] < x[i+1] and y[i] < y[i+1]. The interpolant is evaluated
# by calculating the polynomial coefficients in x and y.
procedure ii_grspline3 (coeff, first_point, len_coeff, x, y, zfit, nxpts,
nypts, len_zfit)
real coeff[ARB] # 1D array of coefficients
int first_point # offset of first data point
int len_coeff # row length of coeff
real x[nxpts] # array of x values
real y[nypts] # array of y values
real zfit[len_zfit,ARB] # array of interpolated values
int nxpts # number of x values
int nypts # number of y values
int len_zfit # row length of zfit
int ny, nymin, nymax, nylines
int row_index, xindex
int i, j
pointer sp, nx, sx, tx, sx3, tx3, work, lbuf, lbufp1, lbufp2, lbufm1
real sy, ty, ty3, sy3
errchk smark, salloc, sfree
begin
# find the y limits
nymin = int (y[1]) - 1
nymax = int (y[nypts]) + 2
nylines = nymax - nymin + 1
# allocate space for work array
call smark (sp)
call salloc (nx, nxpts, TY_INT)
call salloc (sx, nxpts, TY_REAL)
call salloc (sx3, nxpts, TY_REAL)
call salloc (tx, nxpts, TY_REAL)
call salloc (tx3, nxpts, TY_REAL)
call salloc (work, nylines * nxpts, TY_REAL)
# intialize
call achtri (x, Memi[nx], nxpts)
do j = 1, nxpts {
Memr[sx+j-1] = x[j] - Memi[nx+j-1]
Memr[tx+j-1] = 1. - Memr[sx+j-1]
}
call apowkr (Memr[sx], 3, Memr[sx3], nxpts)
call apowkr (Memr[tx], 3, Memr[tx3], nxpts)
do j = 1, nxpts {
Memr[sx+j-1] = 1. + Memr[sx+j-1] * (3. + Memr[sx+j-1] *
(3. - 3. * Memr[sx+j-1]))
Memr[tx+j-1] = 1. + Memr[tx+j-1] * (3. + Memr[tx+j-1] *
(3. - 3. * Memr[tx+j-1]))
}
# interpolate in x for each y
lbuf = work
do i = 1, nylines {
# find appropriate row
row_index = first_point + (i + nymin - 2) * len_coeff
# x interpolation
do j = 1, nxpts {
xindex = row_index + Memi[nx+j-1]
Memr[lbuf+j-1] = Memr[tx3+j-1] * coeff[xindex-1] +
Memr[tx+j-1] * coeff[xindex] +
Memr[sx+j-1] * coeff[xindex+1] +
Memr[sx3+j-1] * coeff[xindex+2]
}
lbuf = lbuf + nxpts
}
# interpolate in y
do i = 1, nypts {
ny = y[i]
sy = y[i] - ny
ty = 1. - sy
sy3 = sy ** 3
ty3 = ty ** 3
sy = 1. + sy * (3. + sy * (3. - 3. * sy))
ty = 1. + ty * (3. + ty * (3. - 3. * ty))
lbuf = work + nxpts * (ny - nymin)
lbufp1 = lbuf + nxpts
lbufp2 = lbufp1 + nxpts
lbufm1 = lbuf - nxpts
do j = 1, nxpts
zfit[j,i] = ty3 * Memr[lbufm1+j-1] + ty * Memr[lbuf+j-1] +
sy * Memr[lbufp1+j-1] + sy3 * Memr[lbufp2+j-1]
}
# release working space
call sfree (sp)
end
# II_GRSINC -- Procedure to evaluate the sinc interpolant on a rectangular
# grid. The procedure assumes that 1 <= x <= nxpix and that 1 <= y <= nypix.
# The x and y vectors must be sorted in increasing value of x and y such that
# x[i] < x[i+1] and y[i] < y[i+1]. The routine outputs a grid of nxpix by
# nypix points using the coeff array where coeff[1+first_point] = datain[1,1]
# The sinc truncation length is nsinc. The taper is a cosine bell function
# which is approximated by a quartic polynomial which is valid for 0 <= x
# <= PI / 2 (Abramowitz and Stegun 1972, Dover Publications, p 76). If the
# point to be interpolated is less than mindx and mindy from a data point
# no interpolation is done and the data point itself is returned.
procedure ii_grsinc (coeff, first_point, len_coeff, len_array, x, y, zfit,
nxpts, nypts, len_zfit, nsinc, mindx, mindy)
real coeff[ARB] # 1D coefficient array
int first_point # offset of first data point
int len_coeff # row length of coeff
int len_array # column length of coeff
real x[nxpts] # array of x values
real y[nypts] # array of y values
real zfit[len_zfit,ARB] # array of interpolatedvalues
int nxpts # number of x values
int nypts # number of y values
int len_zfit # row length of zfit
int nsinc # sinc interpolant truncation length
real mindx, mindy # the precision of the interpolant.
int i, j, k, nconv, nymin, nymax, nylines
int ixy, index, minj, maxj, offj
pointer sp, taper, ac, ixn, work, pac, pwork, ppwork
real sconst, a2, a4, dxy, dxyn, dx2, axy, pxy, sumxy, fdxy
begin
# Compute the limits of the convolution in y.
nconv = 2 * nsinc + 1
nymin = max (1, nint (y[1]) - nsinc)
#nymin = max (1, int (y[1]) - nsinc)
nymax = min (len_array, nint (y[nypts]) + nsinc)
#nymax = min (len_array, int (y[nypts]) + nsinc)
nylines = nymax - nymin + 1
# Allocate working space.
call smark (sp)
call salloc (taper, nconv, TY_REAL)
call salloc (ac, nconv * max (nxpts, nypts), TY_REAL)
call salloc (ixn, max (nxpts, nypts), TY_INT)
call salloc (work, nxpts * nylines, TY_REAL)
# Compute the parameters of the cosine bell taper.
sconst = (HALFPI / nsinc) ** 2
a2 = -0.49670
a4 = 0.03705
if (mod (nsinc, 2) == 0)
fdxy = 1.0
else
fdxy = -1.0
do i = -nsinc, nsinc {
dx2 = sconst * i * i
Memr[taper+i+nsinc] = fdxy * (1.0 + a2 * dx2 + a4 * dx2 * dx2) ** 2
fdxy = -fdxy
}
# Compute the x interpolants for each shift in x.
pac = ac
do i = 1, nxpts {
ixy = nint (x[i])
Memi[ixn+i-1] = ixy
dxy = x[i] - ixy
#dxyn = -1 - nsinc - dxy
dxyn = 1 + nsinc + dxy
sumxy = 0.0
do j = 1, nconv {
#axy = j + dxyn
axy = dxyn - j
if (axy == 0.0)
pxy = 1.0
else if (dxy == 0.0)
pxy = 0.0
else
pxy = Memr[taper+j-1] / axy
Memr[pac+j-1] = pxy
sumxy = sumxy + pxy
}
call adivkr (Memr[pac], sumxy, Memr[pac], nconv)
pac = pac + nconv
}
# Do the convolutions in the x direction.
pwork = work
do k = nymin, nymax {
index = first_point + (k - 1) * len_coeff
pac = ac
do i = 1, nxpts {
sumxy = 0.0
ixy = Memi[ixn+i-1]
minj = max (1, ixy - nsinc)
maxj = min (len_coeff, ixy + nsinc)
offj = -ixy + nsinc
do j = ixy - nsinc, minj - 1
sumxy = sumxy + Memr[pac+j+offj] * coeff[index+1]
do j = minj, maxj
sumxy = sumxy + Memr[pac+j+offj] * coeff[index+j]
do j = maxj + 1, ixy + nsinc
sumxy = sumxy + Memr[pac+j+offj] * coeff[index+len_coeff]
Memr[pwork+i-1] = sumxy
pac = pac + nconv
}
pwork = pwork + nxpts
}
# Compute the y interpolants for each shift in y.
pac = ac
do i = 1, nypts {
ixy = nint (y[i])
dxy = y[i] - ixy
Memi[ixn+i-1] = ixy - nsinc - nymin + 1
#dxyn = -1 - nsinc - dxy
dxyn = 1 + nsinc + dxy
sumxy = 0.0
do j = 1, nconv {
#axy = j + dxyn
axy = dxyn - j
if (axy == 0.0)
pxy = 1.0
else if (dxy == 0.0)
pxy = 0.0
else
pxy = Memr[taper+j-1] / axy
Memr[pac+j-1] = pxy
sumxy = sumxy + pxy
}
call adivkr (Memr[pac], sumxy, Memr[pac], nconv)
pac = pac + nconv
}
# Do the interpolation in y.
do k = 1, nxpts {
pwork = work + k - 1
pac = ac
do i = 1, nypts {
ixy = min (nylines, max (1, Memi[ixn+i-1]))
ppwork = pwork + (ixy - 1) * nxpts
sumxy = 0.0
do j = 1, nconv {
sumxy = sumxy + Memr[pac+j-1] * Memr[ppwork]
ppwork = ppwork + nxpts
}
pac = pac + nconv
zfit[k,i] = sumxy
}
}
call sfree (sp)
end
# II_GRLSINC -- Procedure to evaluate the sinc interpolant on a rectangular
# grid. The procedure assumes that 1 <= x <= nxpix and that 1 <= y <= nypix.
# The x and y vectors must be sorted in increasing value of x and y such that
# x[i] < x[i+1] and y[i] < y[i+1]. The routine outputs a grid of nxpix by
# nypix points using the coeff array where coeff[1+first_point] = datain[1,1]
# The sinc truncation length is nsinc. The taper is a cosine bell function
# which is approximated by a quartic polynomial which is valid for 0 <= x
# <= PI / 2 (Abramowitz and Stegun 1972, Dover Publications, p 76). If the
# point to be interpolated is less than mindx and mindy from a data point
# no interpolation is done and the data point itself is returned.
procedure ii_grlsinc (coeff, first_point, len_coeff, len_array, x, y, zfit,
nxpts, nypts, len_zfit, ltable, nconv, nxincr, nyincr,
mindx, mindy)
real coeff[ARB] # 1D coefficient array
int first_point # offset of first data point
int len_coeff # row length of coeff
int len_array # column length of coeff
real x[nxpts] # array of x values
real y[nypts] # array of y values
real zfit[len_zfit,ARB] # array of interpolated values
int nxpts # number of x values
int nypts # number of y values
int len_zfit # row length of zfit
real ltable[nconv,nconv,nxincr,nyincr] # pre-computed sinc lut
int nconv # sinc trunction full-width
int nxincr, nyincr # resolution of look-up table
real mindx, mindy # the precision of interpolant
int j
pointer sp, ytmp
begin
# Allocate working space.
call smark (sp)
call salloc (ytmp, nxpts, TY_REAL)
do j = 1, nypts {
call amovkr (y[j], Memr[ytmp], nxpts)
call ii_bilsinc (coeff, first_point, len_coeff, len_array, x,
Memr[ytmp], zfit[1,j], nxpts, ltable, nconv, nxincr, nyincr,
mindx, mindy)
}
call sfree (sp)
end
# II_GRDRIZ -- Procedure to evaluate the drizzle interpolant on a rectangular
# grid. The procedure assumes that the x and y intervals are ordered from
# smallest to largest
procedure ii_grdriz (coeff, first_point, len_coeff, len_array, x, y, zfit,
nxpts, nypts, len_zfit, xfrac, yfrac, badval)
real coeff[ARB] # 1D coefficient array
int first_point # offset of first data point
int len_coeff # row length of coeff
int len_array # column length of coeff
real x[ARB] # array of x values
real y[ARB] # array of y values
real zfit[len_zfit,ARB] # array of interpolatedvalues
int nxpts # number of x values
int nypts # number of y values
int len_zfit # row length of zfit
real xfrac, yfrac # the x and y pixel fractions
real badval # bad value
int i, j, jj, nylmin, nylmax, nylines
int cindex, neara, nearb
pointer sp, work, xindex
real ymin, ymax, dy, accum, waccum, hyfrac
begin
ymin = min (y[1], y[2])
ymax = max (y[2*nypts-1], y[2*nypts])
nylmin = int (ymin + 0.5)
nylmax = int (ymax + 0.5)
nylines = nylmax - nylmin + 1
call smark (sp)
call salloc (work, nxpts * nylines, TY_REAL)
# For each in range y integrate in x.
cindex = 1 + first_point + (nylmin - 1) * len_coeff
xindex = work
do j = nylmin, nylmax {
if (xfrac >= 1.0)
call ii_driz1 (x, Memr[xindex], nxpts, coeff[cindex], badval)
else
call ii_driz (x, Memr[xindex], nxpts, coeff[cindex], xfrac,
badval)
xindex = xindex + nxpts
cindex = cindex + len_coeff
}
# For each range in x integrate in y. This may need to be vectorized?
hyfrac = yfrac / 2.0
do i = 1, nxpts {
xindex = work + i - 1
do j = 1, nypts {
ymin = min (y[2*j-1], y[2*j])
ymax = max (y[2*j-1], y[2*j])
neara = ymin + 0.5
nearb = ymax + 0.5
accum = 0.0
waccum = 0.0
if (neara == nearb) {
dy = min (ymax, nearb + hyfrac) - max (ymin,
neara - hyfrac)
if (dy > 0.0) {
accum = accum + dy * Memr[xindex+(neara-nylmin)*nxpts]
waccum = waccum + dy
}
} else {
# First segment.
dy = neara + hyfrac - max (ymin, neara - hyfrac)
if (dy > 0.0) {
accum = accum + dy * Memr[xindex+(neara-nylmin)*nxpts]
waccum = waccum + dy
}
# Interior segments.
do jj = neara + 1, nearb - 1 {
accum = accum + yfrac * Memr[xindex+(jj-nylmin)*nxpts]
waccum = waccum + yfrac
}
# Last segment.
dy = min (ymax, nearb + hyfrac) - (nearb - hyfrac)
if (dy > 0.0) {
accum = accum + dy * Memr[xindex+(nearb-nylmin)*nxpts]
waccum = waccum + dy
}
}
if (waccum <= 0.0)
zfit[i,j] = 0.0
else
zfit[i,j] = accum / waccum
}
}
call sfree (sp)
end
|