1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <math.h>
# II_PCPOLY3 -- Procedure to evaluate the polynomial coefficients
# of third order in x and y using Everetts formuala.
procedure ii_pcpoly3 (coeff, index, len_coeff, pcoeff, len_pcoeff)
real coeff[ARB] # 1D array of interpolant coeffcients
int index # pointer into coeff array
int len_coeff # row length of coeffcients
real pcoeff[len_pcoeff,ARB] # polynomial coefficients
int len_pcoeff # row length of pcoeff
int tptr
int i, j
real cd20, cd21, temp[4]
begin
# determine polynomial coefficients in x
tptr = index
do i = 1, 4 {
# calculate the central differences
cd20 = 1./6. * (coeff[tptr+1] - 2. * coeff[tptr] + coeff[tptr-1])
cd21 = 1./6. * (coeff[tptr+2] - 2. * coeff[tptr+1] + coeff[tptr])
# calculate the polynomial coefficients in x at each y
pcoeff[1,i] = coeff[tptr]
pcoeff[2,i] = coeff[tptr+1] - coeff[tptr] - 2. * cd20 - cd21
pcoeff[3,i] = 3. * cd20
pcoeff[4,i] = cd21 - cd20
tptr = tptr + len_coeff
}
# calculate polynomial coefficients in y
do j = 1, 4 {
# calculate the central differences
cd20 = 1./6. * (pcoeff[j,3] - 2. * pcoeff[j,2] + pcoeff[j,1])
cd21 = 1./6. * (pcoeff[j,4] - 2. * pcoeff[j,3] + pcoeff[j,2])
# calculate the final coefficients
temp[1] = pcoeff[j,2]
temp[2] = pcoeff[j,3] - pcoeff[j,2] - 2. * cd20 - cd21
temp[3] = 3. * cd20
temp[4] = cd21 - cd20
do i = 1, 4
pcoeff[j,i] = temp[i]
}
end
# II_PCPOLY5 -- Procedure to evaluate the polynomial coefficients
# of fifth order in x and y using Everetts formuala.
procedure ii_pcpoly5 (coeff, index, len_coeff, pcoeff, len_pcoeff)
real coeff[ARB] # 1D array of interpolant coeffcients
int index # pointer into coeff array
int len_coeff # row length of coeffcients
real pcoeff[len_pcoeff,ARB] # polynomial coefficients
int len_pcoeff # row length of pcoeff array
int tptr
int i, j
real cd20, cd21, cd40, cd41, temp[6]
begin
# determine polynomial coefficients in x
tptr = index
do i = 1, 6 {
# calculate the central differences
cd20 = 1./6. * (coeff[tptr+1] - 2. * coeff[tptr] + coeff[tptr-1])
cd21 = 1./6. * (coeff[tptr+2] - 2. * coeff[tptr+1] + coeff[tptr])
cd40 = 1./120. * (coeff[tptr-2] - 4. * coeff[tptr-1] +
6. * coeff[tptr] - 4. * coeff[tptr+1] +
coeff[tptr+2])
cd41 = 1./120. * (coeff[tptr-1] - 4. * coeff[tptr] +
6. * coeff[tptr+1] - 4. * coeff[tptr+2] +
coeff[tptr+3])
# calculate coefficients in x for each y
pcoeff[1,i] = coeff[tptr]
pcoeff[2,i] = coeff[tptr+1] - coeff[tptr] - 2. * cd20 - cd21 +
6. * cd40 + 4. * cd41
pcoeff[3,i] = 3. * cd20 - 5. * cd40
pcoeff[4,i] = cd21 - cd20 - 5. * (cd40 + cd41)
pcoeff[5,i] = 5. * cd40
pcoeff[6,i] = cd41 - cd40
tptr = tptr + len_coeff
}
# calculate polynomial coefficients in y
do j = 1, 6 {
# calculate the central differences
cd20 = 1./6. * (pcoeff[j,4] - 2. * pcoeff[j,3] + pcoeff[j,2])
cd21 = 1./6. * (pcoeff[j,5] - 2. * pcoeff[j,4] + pcoeff[j,3])
cd40 = 1./120. * (pcoeff[j,1] - 4. * pcoeff[j,2] +
6. * pcoeff[j,3] - 4. * pcoeff[j,4] + pcoeff[j,5])
cd41 = 1./120. * (pcoeff[j,2] - 4. * pcoeff[j,3] +
6. * pcoeff[j,4] - 4. * pcoeff[j,5] + pcoeff[j,6])
# calculate the final coefficients
temp[1] = pcoeff[j,3]
temp[2] = pcoeff[j,4] - pcoeff[j,3] - 2. * cd20 - cd21 +
6. * cd40 + 4. * cd41
temp[3] = 3. * cd20 - 5. * cd40
temp[4] = cd21 - cd20 - 5. * (cd40 + cd41)
temp[5] = 5. * cd40
temp[6] = cd41 - cd40
do i = 1, 6
pcoeff[j,i] = temp[i]
}
end
# II_PCSPLINE3 -- Procedure to evaluate the polynomial coefficients
# of bicubic spline.
procedure ii_pcspline3 (coeff, index, len_coeff, pcoeff, len_pcoeff)
real coeff[ARB] # 1D array of interpolant coeffcients
int index # pointer into coeff array
int len_coeff # row length of coeffcients
real pcoeff[len_pcoeff,ARB] # polynomial coefficients
int len_pcoeff # row length of pcoeff
int tptr
int i, j
real temp[4]
begin
# determine polynomial coefficients in x
tptr = index
do i = 1, 4 {
pcoeff[1,i] = coeff[tptr+1] + 4. * coeff[tptr] + coeff[tptr-1]
pcoeff[2,i] = 3. * (coeff[tptr+1] - coeff[tptr-1])
pcoeff[3,i] = 3. * (coeff[tptr-1] - 2. * coeff[tptr] +
coeff[tptr+1])
pcoeff[4,i] = -coeff[tptr-1] + 3. * coeff[tptr] -
3. * coeff[tptr+1] + coeff[tptr+2]
tptr = tptr + len_coeff
}
# calculate polynomial coefficients in y
do j = 1, 4 {
temp[1] = pcoeff[j,3] + 4. * pcoeff[j,2] + pcoeff[j,1]
temp[2] = 3. * (pcoeff[j,3] - pcoeff[j,1])
temp[3] = 3. * (pcoeff[j,1] - 2. * pcoeff[j,2] + pcoeff[j,3])
temp[4] = -pcoeff[j,1] + 3. * pcoeff[j,2] - 3. * pcoeff[j,3] +
pcoeff[j,4]
do i = 1, 4
pcoeff[j,i] = temp[i]
}
end
# II_BISINCDER -- Evaluate the derivatives of the 2D sinc interpolator. If the
# function value only is needed call ii_bisinc. This routine computes only
# the first 2 derivatives in x and y. The second derivative is computed
# even if only the first derivative is needed. The sinc truncation length
# is nsinc. The taper is a cosbell approximated by a quartic polynomial.
# The data value if returned if x is closer to x[i] than mindx and y is
# closer to y[i] than mindy.
procedure ii_bisincder (x, y, der, nxder, nyder, len_der, coeff, first_point,
nxpix, nypix, nsinc, mindx, mindy)
real x, y # the input x and y values
real der[len_der,ARB] # the output derivatives array
int nxder, nyder # the number of derivatives to compute
int len_der # the width of the derivatives array
real coeff[ARB] # the coefficient array
int first_point # offset of first data point into the array
int nxpix, nypix # size of the coefficient array
int nsinc # the sinc truncation length
real mindx, mindy # the precision of the sinc interpolant
double sumx, normx[3], normy[3], norm[3,3], sum[3,3]
int i, j, k, jj, kk, xc, yc, nconv, index
int minj, maxj, offj, mink, maxk, offk, last_point
pointer sp, ac, ar
real sconst, a2, a4, dx, dy, dxn, dyn, dx2, taper, sdx, ax, ay, ctanx, ctany
real zx, zy
real px[3], py[3]
begin
# Return if no derivatives ar to be computed.
if (nxder == 0 || nyder == 0)
return
# Initialize the derivatives to zero.
do jj = 1, nyder {
do kk = 1, nxder
der[kk,jj] = 0.0
}
# Return if the data is outside range.
xc = nint (x)
yc = nint (y)
if (xc < 1 || xc > nxpix || yc < 1 || yc > nypix)
return
# Call ii_bsinc if only the function value is requested.
if (nxder == 1 && nyder == 1) {
call ii_bisinc (coeff, first_point, nxpix, nypix, x, y, der[1,1],
1, nsinc, mindx, mindy)
return
}
# Compute the constants for the cosine bell taper approximation.
sconst = (HALFPI / nsinc) ** 2
a2 = -0.49670
a4 = 0.03705
# Allocate some working space.
nconv = 2 * nsinc + 1
call smark (sp)
call salloc (ac, 3 * nconv, TY_REAL)
call salloc (ar, 3 * nconv, TY_REAL)
call aclrr (Memr[ac], 3 * nconv)
call aclrr (Memr[ar], 3 * nconv)
# Initialize.
dx = x - xc
dy = y - yc
if (dx == 0.0)
ctanx = 0.0
else
ctanx = 1.0 / tan (PI * dx)
if (dy == 0.0)
ctany = 0.0
else
ctany = 1.0 / tan (PI * dy)
index = - 1 - nsinc
dxn = -1 - nsinc - dx
dyn = -1 - nsinc - dy
if (mod (nsinc, 2) == 0)
sdx = 1.0
else
sdx = -1.0
do jj = 1, 3 {
normy[jj] = 0.0d0
normx[jj] = 0.0d0
}
do i = 1, nconv {
dx2 = sconst * (i + index) ** 2
taper = sdx * (1.0 + a2 * dx2 + a4 * dx2 * dx2) ** 2
#ax = dxn + i
#ay = dyn + i
ax = -dxn - i
ay = -dyn - i
if (ax == 0.0) {
px[1] = 1.0
px[2] = 0.0
px[3] = - 1.0 / 3.0
} else if (dx == 0.0) {
px[1] = 0.0
px[2] = 0.0
px[3] = 0.0
} else {
zx = 1.0 / ax
px[1] = taper * zx
px[2] = px[1] * (ctanx - zx)
px[3] = -px[1] * (1.0 + 2.0 * zx * (ctanx - zx))
}
if (ay == 0.0) {
py[1] = 1.0
py[2] = 0.0
py[3] = - 1.0 / 3.0
} else if (dy == 0.0) {
py[1] = 0.0
py[2] = 0.0
py[3] = 0.0
} else {
zy = 1.0 / ay
py[1] = taper * zy
py[2] = py[1] * (ctany - zy)
py[3] = -py[1] * (1.0 + 2.0 * zy * (ctany - zy))
}
Memr[ac+i-1] = px[1]
Memr[ac+nconv+i-1] = px[2]
Memr[ac+2*nconv+i-1] = px[3]
Memr[ar+i-1] = py[1]
Memr[ar+nconv+i-1] = py[2]
Memr[ar+2*nconv+i-1] = py[3]
do jj = 1, 3 {
normx[jj] = normx[jj] + px[jj]
normy[jj] = normy[jj] + py[jj]
}
sdx = -sdx
}
# Normalize.
do jj = 1, 3 {
do kk = 1, 3
norm[kk,jj] = normx[kk] * normy[jj]
}
# Do the convolution.
minj = max (1, yc - nsinc)
maxj = min (nypix, yc + nsinc)
mink = max (1, xc - nsinc)
maxk = min (nxpix, xc + nsinc)
do jj = 1, nyder {
offj = ar + (jj - 1) * nconv - yc + nsinc
do kk = 1, nxder {
offk = ac + (kk - 1) * nconv - xc + nsinc
sum[kk,jj] = 0.0d0
# Do the convolutions.
do j = yc - nsinc, minj - 1 {
sumx = 0.0d0
do k = xc - nsinc, mink - 1
sumx = sumx + Memr[k+offk] * coeff[first_point+1]
do k = mink, maxk
sumx = sumx + Memr[k+offk] * coeff[first_point+k]
do k = maxk + 1, xc + nsinc
sumx = sumx + Memr[k+offk] * coeff[first_point+nxpix]
sum[kk,jj] = sum[kk,jj] + Memr[j+offj] * sumx
}
do j = minj, maxj {
index = first_point + (j - 1) * nxpix
sumx = 0.0d0
do k = xc - nsinc, mink - 1
sumx = sumx + Memr[k+offk] * coeff[index+1]
do k = mink, maxk
sumx = sumx + Memr[k+offk] * coeff[index+k]
do k = maxk + 1, xc + nsinc
sumx = sumx + Memr[k+offk] * coeff[index+nxpix]
sum[kk,jj] = sum[kk,jj] + Memr[j+offj] * sumx
}
do j = maxj + 1, yc + nsinc {
last_point = first_point + (nypix - 1) * nxpix
sumx = 0.0d0
do k = xc - nsinc, mink - 1
sumx = sumx + Memr[k+offk] * coeff[last_point+1]
do k = mink, maxk
sumx = sumx + Memr[k+offk] * coeff[last_point+k]
do k = maxk + 1, xc + nsinc
sumx = sumx + Memr[k+offk] * coeff[last_point+nxpix]
sum[kk,jj] = sum[kk,jj] + Memr[j+offj] * sumx
}
}
}
# Build the derivatives.
der[1,1] = sum[1,1] / norm[1,1]
if (nxder > 1)
der[2,1] = sum[2,1] / norm[1,1] - (sum[1,1] * norm[2,1]) /
norm[1,1] ** 2
if (nxder > 2)
der[3,1] = sum[3,1] / norm[1,1] - (norm[3,1] * sum[1,1] +
2.0d0 * sum[2,1] * norm[2,1]) / norm[1,1] ** 2 +
2.0d0 * sum[1,1] * norm[2,1] * norm[2,1] / norm[1,1] ** 3
if (nyder > 1) {
der[1,2] = sum[1,2] / norm[1,1] - (sum[1,1] * norm[1,2]) /
norm[1,1] ** 2
if (nxder > 1)
der[2,2] = sum[2,2] / norm[1,1] - (sum[2,1] * norm[1,2] +
sum[1,2] * norm[2,1] + norm[2,2] * sum[1,1]) /
norm[1,1] ** 2 + (2.0d0 * sum[1,1] * norm[2,1] *
norm[1,2]) / norm[1,1] ** 3
if (nxder > 2)
der[3,2] = sum[3,2] / norm[1,1] - (sum[3,1] * norm[1,2] +
2.0 * norm[2,2] * sum[2,1] + 2.0 * sum[2,2] *
norm[2,1] + norm[3,1] * sum[1,2] + norm[3,2] *
sum[1,1]) / norm[1,1] ** 2 + (4.0 * norm[2,1] *
sum[2,1] * norm[1,2] + 2.0 * norm[2,1] * sum[1,2] *
norm[2,1] + 4.0 * norm[2,1] * norm[2,2] * sum[1,1] +
2.0 * norm[3,1] * norm[1,2] * sum[1,1]) /
norm[1,1] ** 3 - 6.0 * norm[2,1] * norm[2,1] *
norm[1,2] * sum[1,1] / norm[1,1] ** 4
}
if (nyder > 2) {
der[1,3] = sum[1,3] / norm[1,1] - (norm[1,3] * sum[1,1] +
2.0d0 * sum[1,2] * norm[1,2]) / norm[1,1] ** 2 +
2.0d0 * sum[1,1] * norm[1,2] * norm[1,2] / norm[1,1] ** 3
if (nxder > 1)
der[2,3] = sum[2,3] / norm[1,1] - (sum[1,3] * norm[2,1] +
2.0 * norm[2,2] * sum[1,2] + 2.0 * sum[2,2] *
norm[1,2] + norm[1,3] * sum[2,1] + norm[2,3] *
sum[1,1]) / norm[1,1] ** 2 + (4.0 * norm[1,2] *
sum[1,2] * norm[2,1] + 2.0 * norm[1,2] * sum[2,1] *
norm[1,2] + 4.0 * norm[1,2] * norm[2,2] * sum[1,1] +
2.0 * norm[1,3] * norm[2,1] * sum[1,1]) /
norm[1,1] ** 3 - 6.0 * norm[1,2] * norm[1,2] *
norm[2,1] * sum[1,1] / norm[1,1] ** 4
if (nxder > 2)
der[3,3] = sum[3,3] / norm[1,1] - (2.0 * sum[2,3] * norm[2,1] +
norm[3,1] * sum[1,3] + 2.0 * norm[3,2] * sum[1,2] +
4.0 * sum[2,2] * norm[2,2] + 2.0 * sum[3,2] *
norm[1,2] + 2.0 * norm[2,3] * sum[2,1] + sum[3,1] *
norm[1,3] + norm[3,3] * sum[1,1]) / norm[1,1] ** 2 +
(2.0 * norm[2,1] * norm[2,1] * sum[1,3] + 8.0 *
norm[2,1] * sum[1,2] * norm[2,2] + 8.0 * norm[2,1] *
norm[1,2] * sum[2,2] + 4.0 * norm[2,1] * sum[2,1] *
norm[1,3] + 4.0 * norm[2,1] * norm[2,3] * sum[1,1] +
4.0 * norm[1,2] * sum[1,2] * norm[3,1] + 8.0 *
norm[2,2] * sum[2,1] * norm[1,2] + 2.0 * norm[1,2] *
norm[1,2] * sum[3,1] + 4.0 * norm[2,2] * norm[2,2] *
sum[1,1] + 4.0 * norm[1,2] * norm[3,2] * sum[1,1] +
2.0 * norm[1,3] * norm[3,1] * sum[1,1]) /
norm[1,1] ** 3 - (12.0 * norm[2,1] * norm[2,1] *
norm[1,2] * sum[1,2] + 12.0 * norm[2,1] * norm[1,2] *
norm[1,2] * sum[2,1] + 24.0 * norm[2,1] * norm[1,2] *
norm[2,2] * sum[1,1] + 6.0 * norm[2,1] * norm[2,1] *
norm[1,3] * sum[1,1] + 6.0 * norm[1,2] * norm[1,2] *
norm[3,1] * sum[1,1]) / norm[1,1] ** 4 + ( 24.0 *
norm[1,2] * norm[1,2] * norm[2,1] * norm[2,1] *
sum[1,1]) / norm[1,1] ** 5
}
call sfree (sp)
end
|