1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
SUBROUTINE slPLTU (DATE, ELONG, PHI, U, RA, DEC, R, JSTAT)
*+
* - - - - - - -
* P L A N T U
* - - - - - - -
*
* Topocentric apparent RA,Dec of a Solar-System object whose
* heliocentric universal elements are known.
*
* Given:
* DATE d TT MJD of observation (JD - 2400000.5)
* ELONG d observer's east longitude (radians)
* PHI d observer's geodetic latitude (radians)
* U d(13) universal elements
*
* (1) combined mass (M+m)
* (2) total energy of the orbit (alpha)
* (3) reference (osculating) epoch (t0)
* (4-6) position at reference epoch (r0)
* (7-9) velocity at reference epoch (v0)
* (10) heliocentric distance at reference epoch
* (11) r0.v0
* (12) date (t)
* (13) universal eccentric anomaly (psi) of date, approx
*
* Returned:
* RA,DEC d RA, Dec (topocentric apparent, radians)
* R d distance from observer (AU)
* JSTAT i status: 0 = OK
* -1 = radius vector zero
* -2 = failed to converge
*
* Called: slGMST, slDT, slEPJ, slEPV, slUEPV, slPRNU,
* slDMXV, slPVOB, slDC2S, slDA2P
*
* Notes:
*
* 1 DATE is the instant for which the prediction is required. It is
* in the TT timescale (formerly Ephemeris Time, ET) and is a
* Modified Julian Date (JD-2400000.5).
*
* 2 The longitude and latitude allow correction for geocentric
* parallax. This is usually a small effect, but can become
* important for near-Earth asteroids. Geocentric positions can be
* generated by appropriate use of routines slEPV (or slEVP) and
* slUEPV.
*
* 3 The "universal" elements are those which define the orbit for the
* purposes of the method of universal variables (see reference 2).
* They consist of the combined mass of the two bodies, an epoch,
* and the position and velocity vectors (arbitrary reference frame)
* at that epoch. The parameter set used here includes also various
* quantities that can, in fact, be derived from the other
* information. This approach is taken to avoiding unnecessary
* computation and loss of accuracy. The supplementary quantities
* are (i) alpha, which is proportional to the total energy of the
* orbit, (ii) the heliocentric distance at epoch, (iii) the
* outwards component of the velocity at the given epoch, (iv) an
* estimate of psi, the "universal eccentric anomaly" at a given
* date and (v) that date.
*
* 4 The universal elements are with respect to the J2000 equator and
* equinox.
*
* 1 Sterne, Theodore E., "An Introduction to Celestial Mechanics",
* Interscience Publishers Inc., 1960. Section 6.7, p199.
*
* 2 Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
*
* Last revision: 19 February 2005
*
* Copyright P.T.Wallace. All rights reserved.
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA
*
* Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
*-
IMPLICIT NONE
DOUBLE PRECISION DATE,ELONG,PHI,U(13),RA,DEC,R
INTEGER JSTAT
* Light time for unit distance (sec)
DOUBLE PRECISION TAU
PARAMETER (TAU=499.004782D0)
INTEGER I
DOUBLE PRECISION DVB(3),DPB(3),VSG(6),VSP(6),V(6),RMAT(3,3),
: VGP(6),STL,VGO(6),DX,DY,DZ,D,TL
DOUBLE PRECISION slGMST,slDT,slEPJ,slDA2P
* Sun to geocentre (J2000, velocity in AU/s).
CALL slEPV(DATE,VSG,VSG(4),DPB,DVB)
DO I=4,6
VSG(I)=VSG(I)/86400D0
END DO
* Sun to planet (J2000).
CALL slUEPV(DATE,U,VSP,JSTAT)
* Geocentre to planet (J2000).
DO I=1,6
V(I)=VSP(I)-VSG(I)
END DO
* Precession and nutation to date.
CALL slPRNU(2000D0,DATE,RMAT)
CALL slDMXV(RMAT,V,VGP)
CALL slDMXV(RMAT,V(4),VGP(4))
* Geocentre to observer (date).
STL=slGMST(DATE-slDT(slEPJ(DATE))/86400D0)+ELONG
CALL slPVOB(PHI,0D0,STL,VGO)
* Observer to planet (date).
DO I=1,6
V(I)=VGP(I)-VGO(I)
END DO
* Geometric distance (AU).
DX=V(1)
DY=V(2)
DZ=V(3)
D=SQRT(DX*DX+DY*DY+DZ*DZ)
* Light time (sec).
TL=TAU*D
* Correct position for planetary aberration
DO I=1,3
V(I)=V(I)-TL*V(I+3)
END DO
* To RA,Dec.
CALL slDC2S(V,RA,DEC)
RA=slDA2P(RA)
R=D
END
|