1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
SUBROUTINE slPLMO ( ELONGM, PHIM, XP, YP, ELONG, PHI, DAZ )
*+
* - - - - - -
* P L M O
* - - - - - -
*
* Polar motion: correct site longitude and latitude for polar
* motion and calculate azimuth difference between celestial and
* terrestrial poles.
*
* Given:
* ELONGM d mean longitude of the observer (radians, east +ve)
* PHIM d mean geodetic latitude of the observer (radians)
* XP d polar motion x-coordinate (radians)
* YP d polar motion y-coordinate (radians)
*
* Returned:
* ELONG d true longitude of the observer (radians, east +ve)
* PHI d true geodetic latitude of the observer (radians)
* DAZ d azimuth correction (terrestrial-celestial, radians)
*
* Notes:
*
* 1) "Mean" longitude and latitude are the (fixed) values for the
* site's location with respect to the IERS terrestrial reference
* frame; the latitude is geodetic. TAKE CARE WITH THE LONGITUDE
* SIGN CONVENTION. The longitudes used by the present routine
* are east-positive, in accordance with geographical convention
* (and right-handed). In particular, note that the longitudes
* returned by the slOBS routine are west-positive, following
* astronomical usage, and must be reversed in sign before use in
* the present routine.
*
* 2) XP and YP are the (changing) coordinates of the Celestial
* Ephemeris Pole with respect to the IERS Reference Pole.
* XP is positive along the meridian at longitude 0 degrees,
* and YP is positive along the meridian at longitude
* 270 degrees (i.e. 90 degrees west). Values for XP,YP can
* be obtained from IERS circulars and equivalent publications;
* the maximum amplitude observed so far is about 0.3 arcseconds.
*
* 3) "True" longitude and latitude are the (moving) values for
* the site's location with respect to the celestial ephemeris
* pole and the meridian which corresponds to the Greenwich
* apparent sidereal time. The true longitude and latitude
* link the terrestrial coordinates with the standard celestial
* models (for precession, nutation, sidereal time etc).
*
* 4) The azimuths produced by slAOP and slAOPQ are with
* respect to due north as defined by the Celestial Ephemeris
* Pole, and can therefore be called "celestial azimuths".
* However, a telescope fixed to the Earth measures azimuth
* essentially with respect to due north as defined by the
* IERS Reference Pole, and can therefore be called "terrestrial
* azimuth". Uncorrected, this would manifest itself as a
* changing "azimuth zero-point error". The value DAZ is the
* correction to be added to a celestial azimuth to produce
* a terrestrial azimuth.
*
* 5) The present routine is rigorous. For most practical
* purposes, the following simplified formulae provide an
* adequate approximation:
*
* ELONG = ELONGM+XP*COS(ELONGM)-YP*SIN(ELONGM)
* PHI = PHIM+(XP*SIN(ELONGM)+YP*COS(ELONGM))*TAN(PHIM)
* DAZ = -SQRT(XP*XP+YP*YP)*COS(ELONGM-ATAN2(XP,YP))/COS(PHIM)
*
* An alternative formulation for DAZ is:
*
* X = COS(ELONGM)*COS(PHIM)
* Y = SIN(ELONGM)*COS(PHIM)
* DAZ = ATAN2(-X*YP-Y*XP,X*X+Y*Y)
*
* Reference: Seidelmann, P.K. (ed), 1992. "Explanatory Supplement
* to the Astronomical Almanac", ISBN 0-935702-68-7,
* sections 3.27, 4.25, 4.52.
*
* P.T.Wallace Starlink 30 November 2000
*
* Copyright (C) 2000 Rutherford Appleton Laboratory
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA
*
* Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
*-
IMPLICIT NONE
DOUBLE PRECISION ELONGM,PHIM,XP,YP,ELONG,PHI,DAZ
DOUBLE PRECISION SEL,CEL,SPH,CPH,XM,YM,ZM,XNM,YNM,ZNM,
: SXP,CXP,SYP,CYP,ZW,XT,YT,ZT,XNT,YNT
* Site mean longitude and mean geodetic latitude as a Cartesian vector
SEL=SIN(ELONGM)
CEL=COS(ELONGM)
SPH=SIN(PHIM)
CPH=COS(PHIM)
XM=CEL*CPH
YM=SEL*CPH
ZM=SPH
* Rotate site vector by polar motion, Y-component then X-component
SXP=SIN(XP)
CXP=COS(XP)
SYP=SIN(YP)
CYP=COS(YP)
ZW=(-YM*SYP+ZM*CYP)
XT=XM*CXP-ZW*SXP
YT=YM*CYP+ZM*SYP
ZT=XM*SXP+ZW*CXP
* Rotate also the geocentric direction of the terrestrial pole (0,0,1)
XNM=-SXP*CYP
YNM=SYP
ZNM=CXP*CYP
CPH=SQRT(XT*XT+YT*YT)
IF (CPH.EQ.0D0) XT=1D0
SEL=YT/CPH
CEL=XT/CPH
* Return true longitude and true geodetic latitude of site
IF (XT.NE.0D0.OR.YT.NE.0D0) THEN
ELONG=ATAN2(YT,XT)
ELSE
ELONG=0D0
END IF
PHI=ATAN2(ZT,CPH)
* Return current azimuth of terrestrial pole seen from site position
XNT=(XNM*CEL+YNM*SEL)*ZT-ZNM*CPH
YNT=-XNM*SEL+YNM*CEL
IF (XNT.NE.0D0.OR.YNT.NE.0D0) THEN
DAZ=ATAN2(-YNT,-XNT)
ELSE
DAZ=0D0
END IF
END
|