1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
SUBROUTINE slRFRO ( ZOBS, HM, TDK, PMB, RH, WL, PHI, TLR,
: EPS, REF )
*+
* - - - - - -
* R F R O
* - - - - - -
*
* Atmospheric refraction for radio and optical/IR wavelengths.
*
* Given:
* ZOBS d observed zenith distance of the source (radian)
* HM d height of the observer above sea level (metre)
* TDK d ambient temperature at the observer (K)
* PMB d pressure at the observer (millibar)
* RH d relative humidity at the observer (range 0-1)
* WL d effective wavelength of the source (micrometre)
* PHI d latitude of the observer (radian, astronomical)
* TLR d temperature lapse rate in the troposphere (K/metre)
* EPS d precision required to terminate iteration (radian)
*
* Returned:
* REF d refraction: in vacuo ZD minus observed ZD (radian)
*
* Notes:
*
* 1 A suggested value for the TLR argument is 0.0065D0. The
* refraction is significantly affected by TLR, and if studies
* of the local atmosphere have been carried out a better TLR
* value may be available. The sign of the supplied TLR value
* is ignored.
*
* 2 A suggested value for the EPS argument is 1D-8. The result is
* usually at least two orders of magnitude more computationally
* precise than the supplied EPS value.
*
* 3 The routine computes the refraction for zenith distances up
* to and a little beyond 90 deg using the method of Hohenkerk
* and Sinclair (NAO Technical Notes 59 and 63, subsequently adopted
* in the Explanatory Supplement, 1992 edition - see section 3.281).
*
* 4 The code is a development of the optical/IR refraction subroutine
* AREF of C.Hohenkerk (HMNAO, September 1984), with extensions to
* support the radio case. Apart from merely cosmetic changes, the
* following modifications to the original HMNAO optical/IR refraction
* code have been made:
*
* . The angle arguments have been changed to radians.
*
* . Any value of ZOBS is allowed (see note 6, below).
*
* . Other argument values have been limited to safe values.
*
* . Murray's values for the gas constants have been used
* (Vectorial Astrometry, Adam Hilger, 1983).
*
* . The numerical integration phase has been rearranged for
* extra clarity.
*
* . A better model for Ps(T) has been adopted (taken from
* Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982).
*
* . More accurate expressions for Pwo have been adopted
* (again from Gill 1982).
*
* . The formula for the water vapour pressure, given the
* saturation pressure and the relative humidity, is from
* Crane (1976), expression 2.5.5.
*
* . Provision for radio wavelengths has been added using
* expressions devised by A.T.Sinclair, RGO (private
* communication 1989). The refractivity model currently
* used is from J.M.Rueger, "Refractive Index Formulae for
* Electronic Distance Measurement with Radio and Millimetre
* Waves", in Unisurv Report S-68 (2002), School of Surveying
* and Spatial Information Systems, University of New South
* Wales, Sydney, Australia.
*
* . The optical refractivity for dry air is from Resolution 3 of
* the International Association of Geodesy adopted at the XXIIth
* General Assembly in Birmingham, UK, 1999.
*
* . Various small changes have been made to gain speed.
*
* 5 The radio refraction is chosen by specifying WL > 100 micrometres.
* Because the algorithm takes no account of the ionosphere, the
* accuracy deteriorates at low frequencies, below about 30 MHz.
*
* 6 Before use, the value of ZOBS is expressed in the range +/- pi.
* If this ranged ZOBS is -ve, the result REF is computed from its
* absolute value before being made -ve to match. In addition, if
* it has an absolute value greater than 93 deg, a fixed REF value
* equal to the result for ZOBS = 93 deg is returned, appropriately
* signed.
*
* 7 As in the original Hohenkerk and Sinclair algorithm, fixed values
* of the water vapour polytrope exponent, the height of the
* tropopause, and the height at which refraction is negligible are
* used.
*
* 8 The radio refraction has been tested against work done by
* Iain Coulson, JACH, (private communication 1995) for the
* James Clerk Maxwell Telescope, Mauna Kea. For typical conditions,
* agreement at the 0.1 arcsec level is achieved for moderate ZD,
* worsening to perhaps 0.5-1.0 arcsec at ZD 80 deg. At hot and
* humid sea-level sites the accuracy will not be as good.
*
* 9 It should be noted that the relative humidity RH is formally
* defined in terms of "mixing ratio" rather than pressures or
* densities as is often stated. It is the mass of water per unit
* mass of dry air divided by that for saturated air at the same
* temperature and pressure (see Gill 1982).
*
* 10 The algorithm is designed for observers in the troposphere. The
* supplied temperature, pressure and lapse rate are assumed to be
* for a point in the troposphere and are used to define a model
* atmosphere with the tropopause at 11km altitude and a constant
* temperature above that. However, in practice, the refraction
* values returned for stratospheric observers, at altitudes up to
* 25km, are quite usable.
*
* Called: slDA1P, slATMT, slATMS
*
* Last revision: 5 December 2005
*
* Copyright P.T.Wallace. All rights reserved.
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA
*
* Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
*-
IMPLICIT NONE
DOUBLE PRECISION ZOBS,HM,TDK,PMB,RH,WL,PHI,TLR,EPS,REF
*
* Fixed parameters
*
DOUBLE PRECISION D93,GCR,DMD,DMW,S,DELTA,HT,HS
INTEGER ISMAX
* 93 degrees in radians
PARAMETER (D93=1.623156204D0)
* Universal gas constant
PARAMETER (GCR=8314.32D0)
* Molecular weight of dry air
PARAMETER (DMD=28.9644D0)
* Molecular weight of water vapour
PARAMETER (DMW=18.0152D0)
* Mean Earth radius (metre)
PARAMETER (S=6378120D0)
* Exponent of temperature dependence of water vapour pressure
PARAMETER (DELTA=18.36D0)
* Height of tropopause (metre)
PARAMETER (HT=11000D0)
* Upper limit for refractive effects (metre)
PARAMETER (HS=80000D0)
* Numerical integration: maximum number of strips.
PARAMETER (ISMAX=16384)
INTEGER IS,K,N,I,J
LOGICAL OPTIC,LOOP
DOUBLE PRECISION ZOBS1,ZOBS2,HMOK,TDKOK,PMBOK,RHOK,WLOK,ALPHA,
: TOL,WLSQ,GB,A,GAMAL,GAMMA,GAMM2,DELM2,
: TDC,PSAT,PWO,W,
: C1,C2,C3,C4,C5,C6,R0,TEMPO,DN0,RDNDR0,SK0,F0,
: RT,TT,DNT,RDNDRT,SINE,ZT,FT,DNTS,RDNDRP,ZTS,FTS,
: RS,DNS,RDNDRS,ZS,FS,REFOLD,Z0,ZRANGE,FB,FF,FO,FE,
: H,R,SZ,RG,DR,TG,DN,RDNDR,T,F,REFP,REFT
DOUBLE PRECISION slDA1P
* The refraction integrand
DOUBLE PRECISION REFI
REFI(DN,RDNDR) = RDNDR/(DN+RDNDR)
* Transform ZOBS into the normal range.
ZOBS1 = slDA1P(ZOBS)
ZOBS2 = MIN(ABS(ZOBS1),D93)
* Keep other arguments within safe bounds.
HMOK = MIN(MAX(HM,-1D3),HS)
TDKOK = MIN(MAX(TDK,100D0),500D0)
PMBOK = MIN(MAX(PMB,0D0),10000D0)
RHOK = MIN(MAX(RH,0D0),1D0)
WLOK = MAX(WL,0.1D0)
ALPHA = MIN(MAX(ABS(TLR),0.001D0),0.01D0)
* Tolerance for iteration.
TOL = MIN(MAX(ABS(EPS),1D-12),0.1D0)/2D0
* Decide whether optical/IR or radio case - switch at 100 microns.
OPTIC = WLOK.LE.100D0
* Set up model atmosphere parameters defined at the observer.
WLSQ = WLOK*WLOK
GB = 9.784D0*(1D0-0.0026D0*COS(PHI+PHI)-0.00000028D0*HMOK)
IF (OPTIC) THEN
A = (287.6155D0+(1.62887D0+0.01360D0/WLSQ)/WLSQ)
: *273.15D-6/1013.25D0
ELSE
A = 77.6890D-6
END IF
GAMAL = (GB*DMD)/GCR
GAMMA = GAMAL/ALPHA
GAMM2 = GAMMA-2D0
DELM2 = DELTA-2D0
TDC = TDKOK-273.15D0
PSAT = 10D0**((0.7859D0+0.03477D0*TDC)/(1D0+0.00412D0*TDC))*
: (1D0+PMBOK*(4.5D-6+6D-10*TDC*TDC))
IF (PMBOK.GT.0D0) THEN
PWO = RHOK*PSAT/(1D0-(1D0-RHOK)*PSAT/PMBOK)
ELSE
PWO = 0D0
END IF
W = PWO*(1D0-DMW/DMD)*GAMMA/(DELTA-GAMMA)
C1 = A*(PMBOK+W)/TDKOK
IF (OPTIC) THEN
C2 = (A*W+11.2684D-6*PWO)/TDKOK
ELSE
C2 = (A*W+6.3938D-6*PWO)/TDKOK
END IF
C3 = (GAMMA-1D0)*ALPHA*C1/TDKOK
C4 = (DELTA-1D0)*ALPHA*C2/TDKOK
IF (OPTIC) THEN
C5 = 0D0
C6 = 0D0
ELSE
C5 = 375463D-6*PWO/TDKOK
C6 = C5*DELM2*ALPHA/(TDKOK*TDKOK)
END IF
* Conditions at the observer.
R0 = S+HMOK
CALL slATMT(R0,TDKOK,ALPHA,GAMM2,DELM2,C1,C2,C3,C4,C5,C6,
: R0,TEMPO,DN0,RDNDR0)
SK0 = DN0*R0*SIN(ZOBS2)
F0 = REFI(DN0,RDNDR0)
* Conditions in the troposphere at the tropopause.
RT = S+MAX(HT,HMOK)
CALL slATMT(R0,TDKOK,ALPHA,GAMM2,DELM2,C1,C2,C3,C4,C5,C6,
: RT,TT,DNT,RDNDRT)
SINE = SK0/(RT*DNT)
ZT = ATAN2(SINE,SQRT(MAX(1D0-SINE*SINE,0D0)))
FT = REFI(DNT,RDNDRT)
* Conditions in the stratosphere at the tropopause.
CALL slATMS(RT,TT,DNT,GAMAL,RT,DNTS,RDNDRP)
SINE = SK0/(RT*DNTS)
ZTS = ATAN2(SINE,SQRT(MAX(1D0-SINE*SINE,0D0)))
FTS = REFI(DNTS,RDNDRP)
* Conditions at the stratosphere limit.
RS = S+HS
CALL slATMS(RT,TT,DNT,GAMAL,RS,DNS,RDNDRS)
SINE = SK0/(RS*DNS)
ZS = ATAN2(SINE,SQRT(MAX(1D0-SINE*SINE,0D0)))
FS = REFI(DNS,RDNDRS)
* Variable initialization to avoid compiler warning.
REFT = 0D0
* Integrate the refraction integral in two parts; first in the
* troposphere (K=1), then in the stratosphere (K=2).
DO K = 1,2
* Initialize previous refraction to ensure at least two iterations.
REFOLD = 1D0
* Start off with 8 strips.
IS = 8
* Start Z, Z range, and start and end values.
IF (K.EQ.1) THEN
Z0 = ZOBS2
ZRANGE = ZT-Z0
FB = F0
FF = FT
ELSE
Z0 = ZTS
ZRANGE = ZS-Z0
FB = FTS
FF = FS
END IF
* Sums of odd and even values.
FO = 0D0
FE = 0D0
* First time through the loop we have to do every point.
N = 1
* Start of iteration loop (terminates at specified precision).
LOOP = .TRUE.
DO WHILE (LOOP)
* Strip width.
H = ZRANGE/DBLE(IS)
* Initialize distance from Earth centre for quadrature pass.
IF (K.EQ.1) THEN
R = R0
ELSE
R = RT
END IF
* One pass (no need to compute evens after first time).
DO I=1,IS-1,N
* Sine of observed zenith distance.
SZ = SIN(Z0+H*DBLE(I))
* Find R (to the nearest metre, maximum four iterations).
IF (SZ.GT.1D-20) THEN
W = SK0/SZ
RG = R
DR = 1D6
J = 0
DO WHILE (ABS(DR).GT.1D0.AND.J.LT.4)
J=J+1
IF (K.EQ.1) THEN
CALL slATMT(R0,TDKOK,ALPHA,GAMM2,DELM2,
: C1,C2,C3,C4,C5,C6,RG,TG,DN,RDNDR)
ELSE
CALL slATMS(RT,TT,DNT,GAMAL,RG,DN,RDNDR)
END IF
DR = (RG*DN-W)/(DN+RDNDR)
RG = RG-DR
END DO
R = RG
END IF
* Find the refractive index and integrand at R.
IF (K.EQ.1) THEN
CALL slATMT(R0,TDKOK,ALPHA,GAMM2,DELM2,
: C1,C2,C3,C4,C5,C6,R,T,DN,RDNDR)
ELSE
CALL slATMS(RT,TT,DNT,GAMAL,R,DN,RDNDR)
END IF
F = REFI(DN,RDNDR)
* Accumulate odd and (first time only) even values.
IF (N.EQ.1.AND.MOD(I,2).EQ.0) THEN
FE = FE+F
ELSE
FO = FO+F
END IF
END DO
* Evaluate the integrand using Simpson's Rule.
REFP = H*(FB+4D0*FO+2D0*FE+FF)/3D0
* Has the required precision been achieved (or can't be)?
IF (ABS(REFP-REFOLD).GT.TOL.AND.IS.LT.ISMAX) THEN
* No: prepare for next iteration.
* Save current value for convergence test.
REFOLD = REFP
* Double the number of strips.
IS = IS+IS
* Sum of all current values = sum of next pass's even values.
FE = FE+FO
* Prepare for new odd values.
FO = 0D0
* Skip even values next time.
N = 2
ELSE
* Yes: save troposphere component and terminate the loop.
IF (K.EQ.1) REFT = REFP
LOOP = .FALSE.
END IF
END DO
END DO
* Result.
REF = REFT+REFP
IF (ZOBS1.LT.0D0) REF = -REF
END
|