1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
|
include <error.h>
include <imhdr.h>
include <math.h>
include <math/iminterp.h>
# Template data structure
define LEN_MKT 18
define MKT_PROF Memi[$1] # Pointer to profile
define MKT_MSI Memi[$1+1] # MSI interpolation pointer
define MKT_NXM Memi[$1+2] # Number of X points in model
define MKT_NYM Memi[$1+3] # Number of Y points in model
define MKT_F Memr[P2R($1+4)] # Fraction of total flux in profile
define MKT_SCALE Memr[P2R($1+5)] # Radius scale
define MKT_NALLOC Memi[$1+6] # Allocated space for saved templates
define MKT_N Memi[$1+7] # Number of saved templates
define MKT_DATA Memi[$1+8] # Data pointer
define MKT_PTRS Memi[$1+9] # Data pointers
define MKT_NX Memi[$1+10] # Number of X pixels
define MKT_NY Memi[$1+11] # Number of Y pixels
define MKT_XC Memi[$1+12] # Subpixel X center
define MKT_YC Memi[$1+13] # Subpixel Y center
define MKT_FLUX Memi[$1+14] # Flux
define MKT_R Memi[$1+15] # Radius
define MKT_AR Memi[$1+16] # Axial ratio
define MKT_PA Memi[$1+17] # Position angle
define NALLOC 25 # Allocation block for saved templates
define NPROF 5001 # Profile length
define NY 11 # BINPROF binning parameter
# MKT_INIT -- Initialize template memory.
# MKT_FREE -- Free template memory.
# MKT_SAVE -- Save a template
# MKT_GET -- Get a template
# MKT_STAR -- Set star and seeing templates.
# MKT_OBJECT -- Set object profiles.
# MKT_GOBJECT -- Get image raster.
# MKT_BINPROF -- Bin intensity profile
# MKT_GSTAR -- Get the precomputed template with center nearest (x,y).
# MKT_PROFILE -- Make template from profile.
# MKT_MSI -- Make template from image interpolation function.
# MKT_INIT -- Initialize template memory.
# The symbol table is used as a simple way to store the object types by name.
procedure mkt_init ()
int clgeti()
real clgetr()
pointer stopen()
include "mktemplates.com"
begin
nxc = clgeti ("nxc")
nyc = clgeti ("nyc")
nxssub = clgeti ("nxsub")
nyssub = clgeti ("nysub")
nxgsub = clgeti ("nxgsub")
nygsub = clgeti ("nygsub")
dynrange = clgetr ("dynrange")
psfrange = clgetr ("psfrange")
stp = stopen ("mkt", 10, 10, 10*SZ_FNAME)
end
# MKT_FREE -- Free template memory.
procedure mkt_free ()
int i
pointer sym, mkt, sthead(), stnext()
include "mktemplates.com"
begin
# For each object type free the profile and image interpolator data,
# the last unsaved data buffer, all saved templates, and the object
# structure. Finally free the symbol table.
for (sym = sthead (stp); sym != NULL; sym = stnext (stp, sym)) {
mkt = Memi[sym]
if (mkt != NULL) {
call mfree (MKT_PROF(mkt), TY_REAL)
if (MKT_MSI(mkt) != NULL)
call msifree (MKT_MSI(mkt))
call mfree (MKT_DATA(mkt), TY_REAL)
if (MKT_NALLOC(mkt) > 0) {
do i = 0, MKT_N(mkt)-1
call mfree (Memi[MKT_PTRS(mkt)+i], TY_REAL)
call mfree (MKT_PTRS(mkt), TY_POINTER)
call mfree (MKT_NX(mkt), TY_INT)
call mfree (MKT_NY(mkt), TY_INT)
call mfree (MKT_XC(mkt), TY_REAL)
call mfree (MKT_YC(mkt), TY_REAL)
call mfree (MKT_FLUX(mkt), TY_REAL)
call mfree (MKT_R(mkt), TY_REAL)
call mfree (MKT_AR(mkt), TY_REAL)
call mfree (MKT_PA(mkt), TY_REAL)
}
call mfree (mkt, TY_STRUCT)
}
}
call stclose (stp)
end
# MKT_SAVE -- Save a template
# If a template may be used more than once it may be saved upon direction of
# the user in the object list. Otherwise the last unsaved template is
# freed for the next object.
procedure mkt_save (mkt, data, nx, ny, xc, yc, flux, r, ar, pa, save)
pointer mkt #I MKT pointer
pointer data #I Pointer to template data
int nx, ny #I Size of template
real xc, yc #I Subpixel center
real flux #I Flux
real r #I Effective radius
real ar #I Axial ratio
real pa #I Position angle
int save #I Save data?
int i
begin
if (save == NO) {
MKT_DATA(mkt) = data
return
}
if (MKT_NALLOC(mkt) == 0) {
i = NALLOC
call malloc (MKT_PTRS(mkt), i, TY_POINTER)
call malloc (MKT_NX(mkt), i, TY_INT)
call malloc (MKT_NY(mkt), i, TY_INT)
call malloc (MKT_XC(mkt), i, TY_REAL)
call malloc (MKT_YC(mkt), i, TY_REAL)
call malloc (MKT_FLUX(mkt), i, TY_REAL)
call malloc (MKT_R(mkt), i, TY_REAL)
call malloc (MKT_AR(mkt), i, TY_REAL)
call malloc (MKT_PA(mkt), i, TY_REAL)
MKT_NALLOC(mkt) = i
} else if (MKT_N(mkt) == MKT_NALLOC(mkt)) {
i = MKT_NALLOC(mkt) + NALLOC
call realloc (MKT_PTRS(mkt), i, TY_POINTER)
call realloc (MKT_NX(mkt), i, TY_INT)
call realloc (MKT_NY(mkt), i, TY_INT)
call realloc (MKT_XC(mkt), i, TY_REAL)
call realloc (MKT_YC(mkt), i, TY_REAL)
call realloc (MKT_FLUX(mkt), i, TY_REAL)
call realloc (MKT_R(mkt), i, TY_REAL)
call realloc (MKT_AR(mkt), i, TY_REAL)
call realloc (MKT_PA(mkt), i, TY_REAL)
MKT_NALLOC(mkt) = i
}
i = MKT_N(mkt)
Memi[MKT_PTRS(mkt)+i] = data
Memi[MKT_NX(mkt)+i] = nx
Memi[MKT_NY(mkt)+i] = ny
Memr[MKT_XC(mkt)+i] = xc
Memr[MKT_YC(mkt)+i] = yc
Memr[MKT_FLUX(mkt)+i] = flux
Memr[MKT_R(mkt)+i] = r
Memr[MKT_AR(mkt)+i] = ar
Memr[MKT_PA(mkt)+i] = pa
MKT_N(mkt) = i + 1
end
# MKT_GET -- Get a template
# If not a saved template just free last unsaved template.
# If saved search for match with position, size, axial ratio, and pa.
# Return null if not found.
procedure mkt_get (mkt, data, nx, ny, xc, yc, flux, r, ar, pa, save)
pointer mkt #I MKT pointer
pointer data #O Pointer to template data
int nx, ny #O Size of template
real xc, yc #I Subpixel center
real flux #I Flux
real r #I Effective radius
real ar #I Axial ratio
real pa #I Position angle
int save #I Get saved template?
int i
real f
begin
data = NULL
call mfree (MKT_DATA(mkt), TY_REAL)
if (save == NO)
return
for (i=0; i<MKT_N(mkt); i=i+1) {
if (xc != Memr[MKT_XC(mkt)+i])
next
if (yc != Memr[MKT_YC(mkt)+i])
next
if (r != Memr[MKT_R(mkt)+i])
next
if (ar != Memr[MKT_AR(mkt)+i])
next
if (pa != Memr[MKT_PA(mkt)+i])
next
data = Memi[MKT_PTRS(mkt)+i]
nx = Memi[MKT_NX(mkt)+i]
ny = Memi[MKT_NY(mkt)+i]
f = Memr[MKT_FLUX(mkt)+i]
if (f != flux) {
call amulkr (Memr[data], flux/f, Memr[data], nx*ny)
Memr[MKT_FLUX(mkt)+i] = flux
}
return
}
end
# MKT_STAR -- Define star and seeing templates.
# The seeing template has a smaller range for efficiency.
# THe star templates are determined once over a grid of centers and
# then not evaluated again.
pointer procedure mkt_star (name)
char name[ARB] # Profile name or file
# Star and seeing parameters obatined through CLIO.
real r # Major axis sigma (pixels)
real ar # Axial ratio (minor / major)
real pa # Position angle (radians)
int i, j, nxm, nym, nx, ny, fd
real dr, flux, radius, seeing, beta, xc, yc, dxc, dyc, der[2]
pointer sym, mkt1, mkt2, prof, prof1, asi, msi, data, im
bool streq()
real clgetr(), asieval()
int open(), fscan(), nscan()
pointer immap(), imgs2r(), stfind(), stenter()
errchk immap, open, imgs2r, asifit, asieval, asider
include "mktemplates.com"
begin
# Check if previously defined.
sym = stfind (stp, "star")
if (sym != NULL)
return (Memi[sym])
# Select type of star profile and set intensity profile array.
# Compute the fraction of the total flux in the profile.
# Insure that the profile subsamples a subpixel.
star = NULL
see = NULL
prof = NULL
msi = NULL
if (streq (name, "gaussian")) {
r = clgetr ("radius") / sqrt (log (2.))
radius = sqrt (log (dynrange))
seeing = sqrt (log (psfrange))
nxm = max (NPROF, 1 + nint (radius*r*nxssub*nyssub))
call malloc (prof, nxm, TY_REAL)
dr = radius / (nxm - 1)
do i = 0, nxm - 1
Memr[prof+i] = exp (-(i * dr) ** 2)
flux = 1 - Memr[prof+nxm-1]
r = sqrt (log (2.))
radius = radius / r
seeing = seeing / r
} else if (streq (name, "moffat")) {
beta = clgetr ("beta")
r = clgetr ("radius") / sqrt (2. ** (1/beta) - 1.)
radius = sqrt ((dynrange) ** (1/beta) - 1)
seeing = sqrt ((psfrange) ** (1/beta) - 1)
nxm = max (NPROF, 1 + nint (radius*r*nxssub*nyssub))
call malloc (prof, nxm, TY_REAL)
dr = radius / (nxm - 1)
flux = 0
do i = 0, nxm - 1 {
r = i * dr
Memr[prof+i] = 1. / ((1 + r**2) ** beta)
flux = flux + r * Memr[prof+i]
}
# Compute the fraction of the total flux in the profile.
# The last part of the total flux below is computed by expanding
# (1+r**2) --> r**2 under the approximation that r >> 1.
# Note that it is possible to explicitly compute the total
# flux F(total) = beta / (2 * beta - 2) (CRC 53rd edition)
# I found errors in other versions of CRC for this integral!
r = r + dr / 2
xc = 2 * beta - 2
flux = flux / (flux + 1. / (xc * r ** xc))
r = sqrt (2. ** (1/beta) - 1.)
radius = radius / r
seeing = seeing / r
} else ifnoerr (im = immap (name, READ_ONLY, 0)) {
iferr {
nxm = IM_LEN(im,1)
nym = IM_LEN(im,2)
data = imgs2r (im, 1, nxm, 1, nym)
call msiinit (msi, II_BILINEAR)
call msifit (msi, Memr[data], nxm, nym, nxm)
} then
call erract (EA_WARN)
call imunmap (im)
flux = 1.
radius = 1
seeing = 0.8
} else ifnoerr (fd = open (name, READ_ONLY, TEXT_FILE)) {
nxm = NPROF
call malloc (prof1, nxm, TY_REAL)
j = 0
while (fscan (fd) != EOF) {
call gargr (flux)
if (nscan() < 1)
next
if (j == nxm) {
nxm = nxm + NPROF
call realloc (prof1, nxm, TY_REAL)
}
Memr[prof1+j] = flux
j = j + 1
}
call close (fd)
if (j == 0) {
call mfree (prof1, TY_REAL)
call error (1, "PSF template not found")
}
r = clgetr ("radius")
nxm = max (NPROF, 1 + nint (r*nxssub*nyssub))
call malloc (prof, nxm, TY_REAL)
dr = 1. / (nxm - 1)
j = j - 1
call asiinit (asi, II_SPLINE3)
call asifit (asi, Memr[prof1], j)
xc = Memr[prof1]
call mfree (prof1, TY_REAL)
if (xc == 0.) {
flux = 0.
do i = 1, nxm - 1 {
r = i * dr
call asider (asi, 1+j*r, der, 2)
Memr[prof+i] = max (0., der[2] / r)
flux = flux + r * Memr[prof+i]
}
Memr[prof] = max (0., 2 * Memr[prof+1] - Memr[prof+2])
} else {
flux = 0.
do i = 0, nxm - 1 {
r = i * dr
Memr[prof+i] = asieval (asi, 1+j*r)
flux = flux + r * Memr[prof+i]
}
}
call asifree (asi)
xc = 0.9 * flux
flux = 0.
for (i=1; i<nxm && flux<xc; i=i+1)
flux = flux + i * dr * Memr[prof+i]
flux = 1.
radius = 1.
seeing = (i - 1.) * dr
} else
call error (1, "PSF template not found")
# Set size and orientation parameters.
r = clgetr ("radius")
ar = clgetr ("ar")
pa = DEGTORAD (clgetr ("pa"))
radius = r * radius
seeing = r * seeing
# Compute templates with subsampling over a grid of centers.
# Do this for the full star profile and a smaller region for
# convolving extended objects.
# Seeing kernel.
sym = stenter (stp, "seeing", 1)
call calloc (Memi[sym], LEN_MKT, TY_STRUCT)
mkt1 = Memi[sym]
nx = 2 * nint (seeing) + 1
ny = nx
dxc = 1. / nxc
dyc = 1. / nyc
if (prof != NULL) {
nym = 1 + nint (radius * nxssub * nyssub)
call malloc (prof1, nym, TY_REAL)
call mkt_binprof (Memr[prof], nxm, Memr[prof1], nym, radius, nxssub)
for (yc = -0.5+dyc/2; yc < 0.5; yc = yc+dyc) {
for (xc = -0.5+dxc/2; xc < 0.5; xc = xc+dxc) {
call malloc (data, nx*ny, TY_REAL)
call mkt_profile (data, nx, ny, xc, yc, 1., Memr[prof1],
nym, radius, ar, pa, nxssub, nyssub)
call mkt_save (mkt1, data, nx, ny, xc, yc, 1., 0., 0., 0.,
YES)
}
}
} else {
for (yc = -0.5+dyc/2; yc < 0.5; yc = yc+dyc) {
for (xc = -0.5+dxc/2; xc < 0.5; xc = xc+dxc) {
call malloc (data, nx*ny, TY_REAL)
call mkt_msi (data, nx, ny, xc, yc, 1., msi, nxm, nym,
radius, ar, pa, nxssub, nyssub)
call mkt_save (mkt1, data, nx, ny, xc, yc, 1., 0., 0., 0.,
YES)
}
}
}
# Full star templates.
sym = stenter (stp, "star", 1)
call calloc (Memi[sym], LEN_MKT, TY_STRUCT)
mkt2 = Memi[sym]
nx = 2 * nint (radius) + 1
ny = nx
dxc = 1. / nxc
dyc = 1. / nyc
if (prof != NULL) {
for (yc = 0.5+dyc/2; yc < 1.5; yc = yc+dyc) {
for (xc = 0.5+dxc/2; xc < 1.5; xc = xc+dxc) {
call malloc (data, nx*ny, TY_REAL)
call mkt_profile (data, nx, ny, xc, yc, flux, Memr[prof1],
nym, radius, ar, pa, nxssub, nyssub)
call mkt_save (mkt2, data, nx, ny, xc, yc, 1., 0., 0., 0.,
YES)
}
}
call mfree (prof, TY_REAL)
call mfree (prof1, TY_REAL)
} else {
for (yc = 0.5+dyc/2; yc < 1.5; yc = yc+dyc) {
for (xc = 0.5+dxc/2; xc < 1.5; xc = xc+dxc) {
call malloc (data, nx*ny, TY_REAL)
call mkt_msi (data, nx, ny, xc, yc, flux, msi, nxm, nym,
radius, ar, pa, nxssub, nyssub)
call mkt_save (mkt2, data, nx, ny, xc, yc, 1., 0., 0., 0.,
YES)
}
}
call msifree (msi)
}
see = mkt1
star = mkt2
return (star)
end
# MKT_OBJECT -- Set object profiles.
pointer procedure mkt_object (name)
char name[ARB] # Profile name or file
int i, j, n, nxm, nym, fd
real radius, r, dr, s, b, flux, der[2]
pointer sym, mkt, prof, asi, msi, buf, im
real asieval(), uigamma()
int open(), fscan(), nscan(), strncmp(), ctor()
pointer immap(), imgs2r(), stfind(), stenter()
bool streq()
errchk open, immap, asifit, asieval, asider
include "mktemplates.com"
begin
# Check if previously defined.
sym = stfind (stp, name)
if (sym != NULL)
return (Memi[sym])
# Select type of profile and set intensity profile array.
# Compute the fraction of the total flux in the profile.
prof = NULL
msi = NULL
if (strncmp (name, "sersic", 6) == 0) {
i = 7
if (ctor (name, i, s) == 0) {
call eprintf ("WARNING: Bad sersic profile syntax (%s).\n")
call pargstr (name)
return (NULL)
}
n = nint (2 * (s + 0.01))
s = n / 2
call eprintf ("n = %.1f, 2n = %d\n")
call pargr (s)
call pargi (n)
if (n < 1 || n > 20) {
call eprintf ("WARNING: Sersic index out of allowed range (%f).\n")
call pargi (s)
return (NULL)
}
nxm = NPROF
call malloc (prof, nxm, TY_REAL)
call eprintf ("A\n")
radius = log (dynrange) ** s
call eprintf ("B\n")
dr = radius / (nxm - 1)
do i = 0, nxm - 1 {
r = (i * dr) ** (1/s)
Memr[prof+i] = exp (-r)
}
call eprintf ("C\n")
flux = 1 - uigamma (n, r)
call eprintf ("D\n")
r = n - 1./3. + 4./(405.*s) + 46./(25515.*s*s)
call eprintf ("E\n")
radius = radius / r ** s
call eprintf ("F\n")
} else if (streq (name, "expdisk")) {
s = 1.
n = nint (2 * s)
nxm = NPROF
call malloc (prof, nxm, TY_REAL)
radius = log (dynrange) ** s
dr = radius / (nxm - 1)
do i = 0, nxm - 1 {
r = (i * dr) ** (1/s)
Memr[prof+i] = exp (-r)
}
flux = 1 - uigamma (n, r)
r = n - 1./3. + 4./(405.*s) + 46./(25515.*s*s)
radius = radius / r ** s
} else if (streq (name, "devauc")) {
s = 4.
n = nint (2 * s)
nxm = NPROF
call malloc (prof, nxm, TY_REAL)
radius = log (dynrange) ** s
dr = radius / (nxm - 1)
do i = 0, nxm - 1 {
r = (i * dr) ** (1/s)
Memr[prof+i] = exp (-r)
}
flux = 1 - uigamma (n, r)
r = n - 1./3. + 4./(405.*s) + 46./(25515.*s*s)
radius = radius / r ** s
} else ifnoerr (im = immap (name, READ_ONLY, 0)) {
iferr {
nxm = IM_LEN(im,1)
nym = IM_LEN(im,2)
buf = imgs2r (im, 1, nxm, 1, nym)
call msiinit (msi, II_BILINEAR)
call msifit (msi, Memr[buf], nxm, nym, nxm)
} then
call erract (EA_WARN)
call imunmap (im)
flux = 1.
radius = 1.
} else ifnoerr (fd = open (name, READ_ONLY, TEXT_FILE)) {
nxm = NPROF
call malloc (buf, nxm, TY_REAL)
j = 0
while (fscan (fd) != EOF) {
call gargr (flux)
if (nscan() < 1)
next
if (j == nxm) {
nxm = nxm + NPROF
call realloc (buf, nxm, TY_REAL)
}
Memr[buf+j] = flux
j = j + 1
}
call close (fd)
if (j == 0) {
call mfree (buf, TY_REAL)
nxm = 0
call error (1, "PSF template not found")
}
nxm = NPROF
call malloc (prof, nxm, TY_REAL)
dr = 1. / (nxm - 1)
j = j - 1
call asiinit (asi, II_SPLINE3)
call asifit (asi, Memr[buf], j)
s = Memr[buf]
call mfree (buf, TY_REAL)
if (s == 0.) {
do i = 1, nxm - 1 {
r = i * dr
call asider (asi, 1+j*r, der, 2)
Memr[prof+i] = max (0., der[2] / r)
}
Memr[prof] = max (0., 2 * Memr[prof+1] - Memr[prof+2])
} else {
do i = 0, nxm - 1 {
r = i * dr
Memr[prof+i] = asieval (asi, 1+j*r)
}
}
call asifree (asi)
flux = 1.
radius = 1.
} else {
call eprintf ("WARNING: Object template %s not found.\n")
call pargstr (name)
return (NULL)
}
call eprintf ("G\n")
# Create the template structure if a model is defined..
if (prof == NULL && msi == NULL)
mkt = NULL
else {
call calloc (mkt, LEN_MKT, TY_STRUCT)
MKT_PROF(mkt) = prof
MKT_MSI(mkt) = msi
MKT_NXM(mkt) = nxm
MKT_NYM(mkt) = nym
MKT_F(mkt) = flux
MKT_SCALE(mkt) = radius
call eprintf ("flux = %g, radius = %g\n")
call pargr (MKT_F(mkt))
call pargr (MKT_SCALE(mkt))
do i = 0, nxm {
call eprintf ("%d: %g\n")
call pargi (i)
call pargr (Memr[prof+i])
}
}
call eprintf ("H\n")
# Enter object model name in symbol table.
sym = stenter (stp, name, 1)
Memi[sym] = mkt
return (mkt)
end
# MKT_GOBJECT -- Get image raster.
# The profile type is set by the template structure.
procedure mkt_gobject (mkt, data, nx, ny, x, y, z, r, ar, pa, save)
pointer mkt # Object template
pointer data # Data
int nx, ny # Size of returned data
real x, y # Position of object
real z # Flux of object
real r # Major axis scale (pixels)
real ar # Axial ratio (minor / major)
real pa # Position angle (radians)
int save # Use/save template?
real xc, yc, radius
int nprof
pointer prof
include "mktemplates.com"
begin
data = NULL
if (mkt == NULL)
return
# Stars are predefined. Return the nearest template center.
# Other objects are computed with or without seeing.
if (mkt == star)
call mkt_gstar (star, data, nx, ny, x, y, z)
else {
xc = x + 0.5 - int (x + 0.5)
yc = y + 0.5 - int (y + 0.5)
call mkt_get (mkt, data, nx, ny, xc, yc, z, r, ar, pa, save)
if (data != NULL)
return
radius = r * MKT_SCALE(mkt)
nx = max (3, 2 * nint (radius) + 1)
ny = nx
if (see != NULL) {
nx = nx + Memi[MKT_NX(see)] / 2
ny = ny + Memi[MKT_NY(see)] / 2
}
call malloc (data, nx * ny, TY_REAL)
if (MKT_PROF(mkt) != 0) {
nprof = 1 + nint (radius * nxgsub * nxgsub)
call malloc (prof, nprof, TY_REAL)
call mkt_binprof (Memr[MKT_PROF(mkt)], MKT_NXM(mkt),
Memr[prof], nprof, radius, nxgsub)
call mkt_profile (data, nx, ny, x, y, z*MKT_F(mkt), Memr[prof],
nprof, radius, ar, pa, nxgsub, nygsub)
call mfree (prof, TY_REAL)
} else {
call mkt_msi (data, nx, ny, x, y, z, MKT_MSI(mkt),
MKT_NXM(mkt), MKT_NYM(mkt), radius, ar, pa,
nxgsub, nygsub)
}
call mkt_save (mkt, data, nx, ny, xc, yc, z, r, ar, pa, save)
}
end
# MKT_BINPROF -- Bin intensity profile into subpixels
procedure mkt_binprof (prof, nprof, prof1, nprof1, radius, nsub)
real prof[nprof] # Input intensity profile
int nprof # Number of input points
real prof1[nprof] # Output binned intensity profile
int nprof1 # Number of output points
real radius # Radius of profile
int nsub # Maximum subsampling
int i, j, k, k1, k2, l, dx
real scale, dy, val
int debug, open()
data debug/0/
begin
if (radius < 0.1) {
call amovkr (1., prof1, nprof1)
return
} else
call aclrr (prof1, nprof1)
# Set binning parameters
scale = (nprof - 1.) / (nprof1 - 1.)
dx = nint ((nprof1 - 1.) / nsub / radius / 2.)
dy = dx / (NY - 1.)
# Bin central pixels
do i = -dx, 2*dx {
k = abs (i)
k1 = max (1, i - dx + 1)
k2 = i + dx + 1
do j = 0, NY-1 {
if (j == 0)
val = k
else if (k == 0)
val = dy * j
else
val = k * sqrt (1. + (dy * j / k) ** 2)
l = nint (scale * val + 1)
if (l > nprof)
next
val = prof[l] / NY
do l = k1, k2
prof1[l] = prof1[l] + val
}
}
# Now bin remainder of pixels more crudely
do i = 2*dx+1, nprof1-1 {
k1 = i - dx + 1
k2 = min (nprof1, i + dx + 1)
val = prof[nint (scale * i + 1)]
do k = k1, k2
prof1[k] = prof1[k] + val
}
if (debug == YES) {
j = open ("debug1.dat", APPEND, TEXT_FILE)
do i = 1, nprof {
call fprintf (j, "%d %g\n")
call pargi (i)
call pargr (prof[i])
}
call close (j)
j = open ("debug2.dat", APPEND, TEXT_FILE)
do i = 1, nprof1 {
call fprintf (j, "%d %g\n")
call pargi (i)
call pargr (prof1[i])
}
call close (j)
}
end
# MKT_GSTAR -- Get the precomputed template with center nearest (x,y).
procedure mkt_gstar (mkt, data, nx, ny, x, y, z)
pointer mkt # Template
pointer data # Data
int nx, ny # Size of data
real x, y # Position of object
real z # Flux of object
int i, j
real f
include "mktemplates.com"
begin
i = (x + 0.5 - int (x + 0.5)) * nxc
j = (y + 0.5 - int (y + 0.5)) * nyc
i = j * nxc + i
data = Memi[MKT_PTRS(mkt)+i]
nx = Memi[MKT_NX(mkt)+i]
ny = Memi[MKT_NY(mkt)+i]
f = Memr[MKT_FLUX(mkt)+i]
if (f != z) {
call amulkr (Memr[data], z/f, Memr[data], nx*ny)
Memr[MKT_FLUX(mkt)+i] = z
}
end
# MKT_PROFILE -- Make template from profile.
procedure mkt_profile (data, nx, ny, xc, yc, flux, prof, npts, radius,
ar, pa, nxsub, nysub)
pointer data # Pointer to data array
int nx, ny # Size of template
real xc, yc # Model center
real flux # Model flux
real prof[npts] # 1D profile
int npts # Number of points in profile
real radius # Major axis radius of profile (pixels)
real ar # Axial ratio (minor / major)
real pa # Position angle relative to major axis (radians)
int nxsub, nysub # Number of subpixel samples
int i, n, nxs, nys, nxs2, nys2, xs1, xs2, ys1, ys2
int x, y, x2, y2
real a, b, c, r, s, t, z, sum, sum1, asumr()
real dx, dy, dsub, dsub2
real x1, y1, xc1, yc1
pointer ptr, ptr1, ptr2, see1, see2
include "mktemplates.com"
define see_ 99
begin
# Switch on the size of the seeing templates.
if (see != NULL)
if (Memi[MKT_NX(see)] * Memi[MKT_NY(see)] > 1)
goto see_
# NO SEEING:
# If the radius is very small return delta function.
if (radius < 0.1) {
call aclrr (Memr[data], nx*ny)
Memr[data+(ny/2)*nx+(nx/2)] = flux
return
}
# Compute elliptical scale factors for entry into profile array.
r = ((npts - 1) / radius) ** 2
t = ((npts - 1) / (ar * radius)) ** 2
c = cos (pa)
s = sin (pa)
a = r * c * c + t * s * s
b = 2 * (r - t) * c * s
c = r * s * s + t * c * c
# Subsample the profile and sum into each pixel.
n = nx * ny
xc1 = xc - int (xc + 0.5) + nx/2
yc1 = yc - int (yc + 0.5) + ny/2
sum1 = 0.
ptr = data
do y = 0, ny-1 {
t = (y - yc1) ** 2
do x = 0, nx-1 {
i = sqrt ((x - xc1) ** 2 + t)
dsub = 1. / max (1, nxsub - i)
sum = 0.
for (y1 = y-0.5+dsub/2; y1 < y+0.5; y1 = y1+dsub) {
dy = (y1 - yc1)
s = c * dy**2
for (x1=x-0.5+dsub/2; x1<x+0.5; x1=x1+dsub) {
dx = (x1-xc1)
i = sqrt (a * dx**2 + b * dx * dy + s) + 1.5
if (i <= npts)
sum = sum + prof[i]
}
}
sum = sum * dsub ** 2
sum1 = sum1 + sum
Memr[ptr] = sum
ptr = ptr + 1
}
}
# If the subsamples completely miss and signal is zero then return
# delta function otherwise scale to requested flux.
if (sum1 == 0.)
Memr[data+(ny/2)*nx+(nx/2)] = flux
else
call amulkr (Memr[data], flux/sum1, Memr[data], n)
return
# WITH SEEING:
see_ n = nx * ny
call aclrr (Memr[data], n)
sum = 0.
nxs = Memi[MKT_NX(see)]
nys = Memi[MKT_NY(see)]
nxs2 = nxs/2
nys2 = nys/2
# If the profile is very small return full star image rather than
# convolution with truncated seeing template.
if (radius > 0.01) {
r = ((npts - 1) / radius) ** 2
t = ((npts - 1) / (ar * radius)) ** 2
c = cos (pa)
s = sin (pa)
a = r * c * c + t * s * s
b = 2 * (r - t) * c * s
c = r * s * s + t * c * c
xc1 = xc - int (xc + 0.5) + nx/2
yc1 = yc - int (yc + 0.5) + ny/2
ptr = data-nys2*nx-nxs2
do y = 0, ny-1 {
t = (y - yc1) ** 2
ys1 = max (0, nys2 - y)
ys2 = min (nys-1, ny - y + nys2 - 1)
do x = 0, nx-1 {
i = sqrt ((x - xc1) ** 2 + t)
dsub = 1. / max (1, nxsub - i)
dsub2 = dsub ** 2
xs1 = max (0, nxs2 - x)
xs2 = min (nxs-1, nx - x + nxs2 - 1)
ptr1 = ptr + xs1
for (y1=y-0.5+dsub/2; y1<y+0.5; y1=y1+dsub) {
dy = (y1 - yc1)
s = c * dy**2
for (x1=x-0.5+dsub/2; x1<x+0.5; x1=x1+dsub) {
dx = (x1-xc1)
i = sqrt (a * dx**2 + b * dx * dy + s) + 1.5
if (i <= npts) {
z = prof[i] * dsub2
call mkt_gstar (see, see1, nxs, nys, x1, y1, 1.)
see1 = see1 + xs1
do y2 = ys1, ys2 {
see2 = see1+y2*nxs
ptr2 = ptr1+y2*nx
do x2 = xs1, xs2 {
Memr[ptr2] = Memr[ptr2] +
z * Memr[see2]
ptr2 = ptr2 + 1
see2 = see2 + 1
}
}
}
}
}
ptr = ptr + 1
}
}
sum = asumr (Memr[data], n)
}
# If no flux is accumulated or radius is very small return star image.
# Otherwise scale to requested flux.
if (sum == 0.) {
call mkt_gstar (star, see1, nxs, nys, xc, yc, flux)
x = nx/2
y = ny/2
nxs2 = nxs / 2
nys2 = nys / 2
xs1 = max (0, nxs2 - x)
xs2 = min (nxs-1, nx - x + nxs2 - 1)
ys1 = max (0, nys2 - y)
ys2 = min (nys-1, ny - y + nys2 - 1)
ptr1 = data-nys2*nx-nxs2+(y*nx+x+xs1)
see1 = see1 + xs1
do y2 = ys1, ys2 {
see2 = see1+y2*nxs
ptr2 = ptr1+y2*nx
do x2 = xs1, xs2 {
Memr[ptr2] = Memr[ptr2] + Memr[see2]
ptr2 = ptr2 + 1
see2 = see2 + 1
}
}
} else
call amulkr (Memr[data], flux/sum, Memr[data], n)
end
# MKT_MSI -- Make template from image interpolation function.
procedure mkt_msi (data, nx, ny, xc, yc, flux, model, nxm, nym, radius,
ar, pa, nxsub, nysub)
pointer data # Pointer to data array
int nx, ny # Size of template
real xc, yc # Model center
real flux # Model flux
pointer model # Surface interpolation pointer for image template
int nxm, nym # Number of points in image template
real radius # Major axis radius of profile (pixels)
real ar # Axial ratio (minor / major)
real pa # Position angle relative to major axis (radians)
int nxsub, nysub # Number of subpixel samples
int i, n, nxs, nys, nxs2, nys2, xs1, xs2, ys1, ys2, x, y, x2, y2
real a, b, c, s, xcm, ycm, x1, y1, xc1, yc1, dsub, sum, sum1
real ac, as, bc, bs, acdx1, acdx2, bsdx1, bsdx2, bcdy1, bcdy2, asdy1, asdy2
real val1, val2, val3, val4, minval, maxval, xm[5], ym[5]
real asumr(), msigrl(), msisqgrl()
pointer ptr, ptr1, ptr2, see1, see2
include "mktemplates.com"
define see_ 99
begin
# Switch on the size of the seeing templates.
if (see != NULL)
if (Memi[MKT_NX(see)] * Memi[MKT_NY(see)] > 1)
goto see_
# NO SEEING:
# If the radius is very small return delta function.
if (radius < 0.1) {
call aclrr (Memr[data], nx*ny)
Memr[data+(ny/2)*nx+(nx/2)] = flux
return
}
a = (nxm / 2.) / radius
b = (nym / 2.) / (ar * radius)
c = cos (pa)
s = sin (pa)
ac = a * c
as = a * s
bc = b * c
bs = b * s
a = nxm
b = nym
xcm = nxm / 2 + 1.
ycm = nym / 2 + 1.
# Subsample the profile and sum into each pixel.
n = nx * ny
xc1 = xc - int (xc + 0.5) + nx/2
yc1 = yc - int (yc + 0.5) + ny/2
sum1 = 0.
ptr = data
do y = 0, ny-1 {
c = (y - yc1) ** 2
do x = 0, nx-1 {
i = sqrt ((x - xc1) ** 2 + c)
dsub = 1. / max (1, nxsub - i)
sum = 0.
for (y1 = y-0.5; y1 < y+0.5-dsub/2; y1 = y1+dsub) {
asdy1 = (y1 - yc1)
asdy2 = asdy1 + dsub
bcdy1 = bc * asdy1 + ycm
bcdy2 = bc * asdy2 + ycm
if (pa == 0.) {
val3 = max (1., bcdy1)
if (val3 >= nym)
next
val4 = min (b, bcdy2)
if (val3 >= val4)
next
}
asdy1 = as * asdy1
asdy2 = as * asdy2
for (x1=x-0.5; x1<x+0.5-dsub/2; x1=x1+dsub) {
bsdx1 = (x1-xc1)
bsdx2 = bsdx1 + dsub
acdx1 = ac * bsdx1 + xcm
acdx2 = ac * bsdx2 + xcm
if (pa == 0.) {
val1 = max (1., acdx1)
if (val1 >= nxm)
next
val2 = min (a, acdx2)
if (val1 >= val2)
next
s = msisqgrl (model, val1, val2, val3, val4)
} else {
bsdx1 = bs * bsdx1
bsdx2 = bs * bsdx2
val1 = acdx1 + asdy1
val2 = acdx2 + asdy1
val3 = acdx2 + asdy2
val4 = acdx1 + asdy2
minval = min (val1, val2, val3, val4)
maxval = max (val1, val2, val3, val4)
if (minval >= a || maxval <= 1.)
next
xm[1] = max (1., min (a, val1))
xm[2] = max (1., min (a, val2))
xm[3] = max (1., min (a, val3))
xm[4] = max (1., min (a, val4))
xm[5] = xm[1]
val1 = bcdy1 - bsdx1
val2 = bcdy1 - bsdx2
val3 = bcdy2 - bsdx2
val4 = bcdy2 - bsdx1
minval = min (val1, val2, val3, val4)
maxval = max (val1, val2, val3, val4)
if (minval >= b || maxval <= 1.)
next
ym[1] = max (1., min (b, val1))
ym[2] = max (1., min (b, val2))
ym[3] = max (1., min (b, val3))
ym[4] = max (1., min (b, val4))
ym[5] = ym[1]
y2 = 1
do x2 = 2, 4
if (ym[x2] < ym[y2])
y2 = x2
switch (y2) {
case 2:
xm[1] = xm[2]; ym[1] = ym[2]
xm[2] = xm[3]; ym[2] = ym[3]
xm[3] = xm[4]; ym[3] = ym[4]
xm[4] = xm[5]; ym[4] = ym[5]
xm[5] = xm[1]; ym[5] = ym[1]
case 3:
xm[1] = xm[3]; ym[1] = ym[3]
xm[3] = xm[5]; ym[3] = ym[5]
xm[5] = xm[2]; ym[5] = ym[2]
xm[2] = xm[4]; ym[2] = ym[4]
xm[4] = xm[5]; ym[4] = ym[5]
xm[5] = xm[1]; ym[5] = ym[1]
case 4:
xm[5] = xm[4]; ym[5] = ym[4]
xm[4] = xm[3]; ym[4] = ym[3]
xm[3] = xm[2]; ym[3] = ym[2]
xm[2] = xm[1]; ym[2] = ym[1]
xm[1] = xm[5]; ym[1] = ym[5]
}
s = msigrl (model, xm, ym, 5)
}
sum = sum + s
}
}
sum1 = sum1 + sum
Memr[ptr] = sum
ptr = ptr + 1
}
}
call amulkr (Memr[data], flux/sum1, Memr[data], n)
return
# SEEING:
see_ n = nx * ny
call aclrr (Memr[data], n)
sum = 0.
nxs = Memi[MKT_NX(see)]
nys = Memi[MKT_NY(see)]
nxs2 = nxs/2
nys2 = nys/2
# If the profile is very small return full star image rather than
# convolution with truncated seeing template.
if (radius > 0.01) {
a = (nxm / 2.) / radius
b = (nym / 2.) / (ar * radius)
c = cos (pa)
s = sin (pa)
ac = a * c
as = a * s
bc = b * c
bs = b * s
a = nxm
b = nym
xcm = nxm / 2 + 1.
ycm = nym / 2 + 1.
xc1 = xc - int (xc + 0.5) + nx/2
yc1 = yc - int (yc + 0.5) + ny/2
ptr = data-nys2*nx-nxs2
do y = 0, ny-1 {
c = (y - yc1) ** 2
ys1 = max (0, nys2 - y)
ys2 = min (nys-1, ny - y + nys2 - 1)
do x = 0, nx-1 {
i = sqrt ((x - xc1) ** 2 + c)
dsub = 1. / max (1, nxsub - i)
xs1 = max (0, nxs2 - x)
xs2 = min (nxs-1, nx - x + nxs2 - 1)
ptr1 = ptr + xs1
for (y1=y-0.5; y1<y+0.5-dsub/2; y1=y1+dsub) {
asdy1 = (y1 - yc1)
asdy2 = asdy1 + dsub
bcdy1 = bc * asdy1 + ycm
bcdy2 = bc * asdy2 + ycm
if (pa == 0.) {
val3 = max (1., bcdy1)
if (val3 >= nym)
next
val4 = min (b, bcdy2)
if (val3 >= val4)
next
}
asdy1 = as * asdy1
asdy2 = as * asdy2
for (x1=x-0.5; x1<x+0.5-dsub/2; x1=x1+dsub) {
bsdx1 = (x1-xc1)
bsdx2 = bsdx1 + dsub
acdx1 = ac * bsdx1 + xcm
acdx2 = ac * bsdx2 + xcm
if (pa == 0.) {
val1 = max (1., acdx1)
if (val1 >= nxm)
next
val2 = min (a, acdx2)
if (val1 >= val2)
next
sum = msisqgrl (model, val1, val2, val3, val4)
} else {
bsdx1 = bs * bsdx1
bsdx2 = bs * bsdx2
val1 = acdx1 + asdy1
val2 = acdx2 + asdy1
val3 = acdx2 + asdy2
val4 = acdx1 + asdy2
minval = min (val1, val2, val3, val4)
maxval = max (val1, val2, val3, val4)
if (minval >= a || maxval <= 1.)
next
xm[1] = max (1., min (a, val1))
xm[2] = max (1., min (a, val2))
xm[3] = max (1., min (a, val3))
xm[4] = max (1., min (a, val4))
xm[5] = xm[1]
val1 = bcdy1 - bsdx1
val2 = bcdy1 - bsdx2
val3 = bcdy2 - bsdx2
val4 = bcdy2 - bsdx1
minval = min (val1, val2, val3, val4)
maxval = max (val1, val2, val3, val4)
if (minval >= b || maxval <= 1.)
next
ym[1] = max (1., min (b, val1))
ym[2] = max (1., min (b, val2))
ym[3] = max (1., min (b, val3))
ym[4] = max (1., min (b, val4))
ym[5] = ym[1]
# The following is put in to work around a bug in msigrl in V2.8. When
# V2.8 is long gone we can take this stuff out since msigrl will do the
# rotating of the coordinates itself.
minval = max (1., minval)
y2 = 1
do x2 = 2, 4
if (ym[x2] < ym[y2])
y2 = x2
switch (y2) {
case 2:
xm[1] = xm[2]; ym[1] = ym[2]
xm[2] = xm[3]; ym[2] = ym[3]
xm[3] = xm[4]; ym[3] = ym[4]
xm[4] = xm[5]; ym[4] = ym[5]
xm[5] = xm[1]; ym[5] = ym[1]
case 3:
xm[1] = xm[3]; ym[1] = ym[3]
xm[3] = xm[5]; ym[3] = ym[5]
xm[5] = xm[2]; ym[5] = ym[2]
xm[2] = xm[4]; ym[2] = ym[4]
xm[4] = xm[5]; ym[4] = ym[5]
xm[5] = xm[1]; ym[5] = ym[1]
case 4:
xm[5] = xm[4]; ym[5] = ym[4]
xm[4] = xm[3]; ym[4] = ym[3]
xm[3] = xm[2]; ym[3] = ym[2]
xm[2] = xm[1]; ym[2] = ym[1]
xm[1] = xm[5]; ym[1] = ym[5]
}
sum = msigrl (model, xm, ym, 5)
}
call mkt_gstar (see, see1, nxs, nys, x1, y1, 1.)
see1 = see1 + xs1
do y2 = ys1, ys2 {
see2 = see1+y2*nxs
ptr2 = ptr1+y2*nx
do x2 = xs1, xs2 {
Memr[ptr2] = Memr[ptr2] + sum * Memr[see2]
ptr2 = ptr2 + 1
see2 = see2 + 1
}
}
}
}
ptr = ptr + 1
}
}
sum = asumr (Memr[data], n)
}
# If no flux is accumulated or radius is very small return star image.
# Otherwise scale to requested flux.
if (sum == 0.) {
call mkt_gstar (star, see1, nxs, nys, xc, yc, flux)
x = nx/2
y = ny/2
nxs2 = nxs / 2
nys2 = nys / 2
xs1 = max (0, nxs2 - x)
xs2 = min (nxs-1, nx - x + nxs2 - 1)
ys1 = max (0, nys2 - y)
ys2 = min (nys-1, ny - y + nys2 - 1)
ptr1 = data-nys2*nx-nxs2+(y*nx+x+xs1)
see1 = see1 + xs1
do y2 = ys1, ys2 {
see2 = see1+y2*nxs
ptr2 = ptr1+y2*nx
do x2 = xs1, xs2 {
Memr[ptr2] = Memr[ptr2] + Memr[see2]
ptr2 = ptr2 + 1
see2 = see2 + 1
}
}
} else
call amulkr (Memr[data], flux/sum, Memr[data], n)
end
# UIGAMMA -- Upper Incomplete Gamma Function
#
# uigamma(n,x) = (n-1)!e^(x) sum (x^k/k!) for k=0, n-1
real procedure uigamma (n, x)
int n #I argument
real x #I argument
int i
real uigamma
double sum, numerator, denominator
begin
numerator = exp(-x)
denominator = 1
sum = numerator / denominator
do i = 1, n {
numerator = numerator * x
denominator = denominator * i
sum = sum + numerator / denominator
}
uigamma = denominator * sum
return (uigamma)
end
|