1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
include <error.h>
include <imhdr.h>
define LEN_UA 20000
# Editing options
define OPTIONS "|replace|add|multiply|"
define REPLACE 1 # Replace pixels
define ADD 2 # Add to pixels
define MULTIPLY 3 # Multiply pixels
# Patterns
define PATTERNS "|constant|grid|checker|coordinates|slope|square"
define CONST 1 # Constant = v1
define GRID 2 # Grid lines of v2 with given spacing
define CHECK 3 # Checkboard of given size
define COORD 4 # Coordinates
define SLOPE 5 # Slope
define SQUARE 6 # Square root checkerboard
# T_MKPATTERN -- Create or modify images using simple patterns.
# Images may be created of a specified size, dimensionality, and pixel
# datatype. The images may be modified to replace, add, or multiply
# by specified values. The patterns include a constant value,
# a grid, a checkerboard or fixed size or increasing size, the
# 1D pixel coordinate, and a slope. For dimensions greater than
# 2 the 2D pattern is repeated.
procedure t_mkpattern ()
int ilist # Input image list
int olist # Output image list
int op # Operation option
int pat # Pattern
real v1 # Pattern value 1
real v2 # Pattern value 2
int size # Pattern size
int nl # Number of lines
int nc # Number of columns
bool new
int i
long vin[IM_MAXDIM], vout[IM_MAXDIM]
pointer sp, input, output, header, in, out, indata, outdata, pat1, pat2
char clgetc()
bool streq()
int clgwrd(), clgeti()
int imtopenp(), imtlen(), imtgetim(), imgnlr(), impnlr()
real clgetr()
pointer immap()
errchk immap
begin
call smark (sp)
call salloc (input, SZ_FNAME, TY_CHAR)
call salloc (output, SZ_FNAME, TY_CHAR)
call salloc (header, SZ_FNAME, TY_CHAR)
# Set the task parameters which apply to all images.
ilist = imtopenp ("input")
olist = imtopenp ("output")
pat = clgwrd ("pattern", Memc[input], SZ_FNAME, PATTERNS)
op = clgwrd ("option", Memc[input], SZ_FNAME, OPTIONS)
v1 = clgetr ("v1")
v2 = clgetr ("v2")
size = max (1, clgeti ("size"))
if (max (1, imtlen (olist)) != imtlen (ilist))
call error (1, "Output image list does not match input image list")
# Loop over the input image lists. If no output list is given
# then create or modify the input image.
while (imtgetim (ilist, Memc[input], SZ_FNAME) != EOF) {
if (imtgetim (olist, Memc[output], SZ_FNAME) == EOF)
call strcpy (Memc[input], Memc[output], SZ_FNAME)
# Map images. Check for new, existing, and inplace images.
if (streq (Memc[input], Memc[output])) {
ifnoerr (out = immap (Memc[output], READ_WRITE, 0)) {
in = out
new = false
} else {
iferr (out = immap (Memc[output], NEW_IMAGE, LEN_UA)) {
call erract (EA_WARN)
next
}
call clgstr ("header", Memc[header], SZ_FNAME)
iferr (call mkh_header (out, Memc[header], false, false))
call erract (EA_WARN)
IM_NDIM(out) = clgeti ("ndim")
IM_LEN(out,1) = clgeti ("ncols")
IM_LEN(out,2) = clgeti ("nlines")
IM_LEN(out,3) = clgeti ("n3")
IM_LEN(out,4) = clgeti ("n4")
IM_LEN(out,5) = clgeti ("n5")
IM_LEN(out,6) = clgeti ("n6")
IM_LEN(out,7) = clgeti ("n7")
switch (clgetc ("pixtype")) {
case 'u':
IM_PIXTYPE(out) = TY_USHORT
case 's':
IM_PIXTYPE(out) = TY_SHORT
case 'i':
IM_PIXTYPE(out) = TY_INT
case 'l':
IM_PIXTYPE(out) = TY_LONG
case 'r':
IM_PIXTYPE(out) = TY_REAL
case 'd':
IM_PIXTYPE(out) = TY_DOUBLE
case 'c':
IM_PIXTYPE(out) = TY_COMPLEX
default:
call error (0, "Bad pixel type")
}
call clgstr ("title", IM_TITLE(out), SZ_IMTITLE)
in = out
new = true
}
} else {
iferr (in = immap (Memc[input], READ_ONLY, 0)) {
call erract (EA_WARN)
next
}
iferr (out = immap (Memc[output], NEW_COPY, in)) {
call erract (EA_WARN)
call imunmap (in)
next
}
new = false
}
nc = IM_LEN(out,1)
nl = IM_LEN(out,2)
call amovkl (long (1), vin, IM_MAXDIM)
call amovkl (long (1), vout, IM_MAXDIM)
# Initialize the pattern; two pointers are returned.
call mkpatinit (pat, size, v1, v2, pat1, pat2, nc, nl)
# Create or modify the image with the specified pattern.
# A new image is always the same as replace.
if (new) {
while (impnlr (out, outdata, vout) != EOF)
call mkpattern (pat, size, v1, v2, pat1, pat2,
vout[2]-1, outdata, nc, nl)
} else {
switch (op) {
case REPLACE:
while (impnlr (out, outdata, vout) != EOF)
call mkpattern (pat, size, v1, v2, pat1, pat2,
vout[2]-1, outdata, nc, nl)
case ADD:
while (impnlr (out, outdata, vout) != EOF) {
i = imgnlr (in, indata, vin)
call mkpattern (pat, size, v1, v2, pat1, pat2,
vout[2]-1, outdata, nc, nl)
call aaddr (Memr[indata], Memr[outdata], Memr[outdata],
nc)
}
case MULTIPLY:
while (impnlr (out, outdata, vout) != EOF) {
i = imgnlr (in, indata, vin)
call mkpattern (pat, size, v1, v2, pat1, pat2,
vout[2]-1, outdata, nc, nl)
call amulr (Memr[indata], Memr[outdata], Memr[outdata],
nc)
}
}
}
call mkpatfree (pat1, pat2)
if (in != out)
call imunmap (in)
call imunmap (out)
}
call imtclose (ilist)
call imtclose (olist)
call sfree (sp)
end
# MKPATINIT -- Initialize the pattern. For speed one or two lines of the
# pattern are created and then used over the image by simple array
# operations.
procedure mkpatinit (pat, size, v1, v2, pat1, pat2, nc, nl)
int pat # Pattern
int size # Pattern size
real v1 # Value 1 for pattern
real v2 # Value 2 for pattern
pointer pat1 # Pattern 1 buffer
pointer pat2 # Pattern 2 buffer
int nc # Number of columns
int nl # Number of lines
int i
begin
pat1 = NULL
pat2 = NULL
switch (pat) {
case CONST:
call malloc (pat1, nc, TY_REAL)
call amovkr (v1, Memr[pat1], nc)
case GRID:
call malloc (pat1, nc, TY_REAL)
call malloc (pat2, nc, TY_REAL)
call amovkr (v1, Memr[pat1], nc)
call amovkr (v2, Memr[pat2], nc)
size = max (size, 2)
do i = 1, nc-1, size
Memr[pat1+i] = v2
case CHECK:
call malloc (pat1, nc, TY_REAL)
call malloc (pat2, nc, TY_REAL)
do i = 0, nc-1 {
if (mod (i/size, 2) == 0) {
Memr[pat1+i] = v1
Memr[pat2+i] = v2
} else {
Memr[pat1+i] = v2
Memr[pat2+i] = v1
}
}
case COORD:
call malloc (pat1, nc, TY_REAL)
do i = 0, nc-1
Memr[pat1+i] = i / size + 1
case SLOPE:
call malloc (pat1, nc, TY_REAL)
call malloc (pat2, 1, TY_REAL)
Memr[pat2] = (v2 - v1) / ((nc + nl - 2) / size)
do i = 0, nc - 1
Memr[pat1+i] = v1 + Memr[pat2] * i / size
case SQUARE:
call malloc (pat1, nc, TY_REAL)
call malloc (pat2, nc, TY_REAL)
do i = 0, nc-1 {
if (mod (int (sqrt (real (i/size))), 2) == 0) {
Memr[pat1+i] = v1
Memr[pat2+i] = v2
} else {
Memr[pat1+i] = v2
Memr[pat2+i] = v1
}
}
}
end
# MKPATFREE -- Free memory used in the pattern buffers.
procedure mkpatfree (pat1, pat2)
pointer pat1, pat2 # Pattern buffers
begin
call mfree (pat1, TY_REAL)
call mfree (pat2, TY_REAL)
end
# MKPATTERN -- Make a line of data.
procedure mkpattern (pat, size, v1, v2, pat1, pat2, line, data, nc, nl)
int pat # Pattern
int size # Pattern size
real v1 # Pattern value
real v2 # Pattern value
pointer pat1 # Pattern 1
pointer pat2 # Pattern 2
int line # Line
pointer data # Data
int nc # Number of columns
int nl # Number of lines
int i
begin
i = max (0, line-1) / size
switch (pat) {
case CONST:
call amovr (Memr[pat1], Memr[data], nc)
case GRID:
if (mod (line, size) == 1)
call amovr (Memr[pat2], Memr[data], nc)
else
call amovr (Memr[pat1], Memr[data], nc)
case CHECK:
if (mod (i, 2) == 0)
call amovr (Memr[pat1], Memr[data], nc)
else
call amovr (Memr[pat2], Memr[data], nc)
case COORD:
call amovr (Memr[pat1], Memr[data], nc)
call aaddkr (Memr[data], real(i*nc/size), Memr[data], nc)
case SLOPE:
call amovr (Memr[pat1], Memr[data], nc)
call aaddkr (Memr[data], i*Memr[pat2], Memr[data], nc)
case SQUARE:
if (mod (int (sqrt (real (i))), 2) == 0)
call amovr (Memr[pat1], Memr[data], nc)
else
call amovr (Memr[pat2], Memr[data], nc)
}
end
|