aboutsummaryrefslogtreecommitdiff
path: root/noao/astcat/src/pltmodel/t_pltmodel.x
blob: 33c865e28d6999cd29c4cfe0de8c2a43303b8ae0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
include <math.h>

task pltmodel = t_pltmodel

procedure t_pltmodel()

double	x_zero, y_zero, xi_zero, eta_zero, ra_tan, dec_tan, scale, ratio
double	xrot, yrot, dra_tan, ddec_tan, x, y, xstep, ystep, tra, tdec
double	xpix[1000], ypix[1000], xi[1000], eta[1000], dxi[1000], deta[1000]
double	cosd, sind, dra, ddec, c1, f1, b1, ddxi, ddeta, q1, q2, q3
double	rpix, theta, rstd, tstd
int	i, j, ncols, nlines, ncgrid, nlgrid, npts
double	clgetd()
int	clgeti()

begin
	# Get the image size.
	ncols = clgeti ("ncols")
	nlines = clgeti ("nlines")
	ncgrid = clgeti ("ncgrid")
	nlgrid = clgeti ("nlgrid")

	# Get the image zero point in pixels.
	x_zero = clgetd ("x_zero")
	if (IS_INDEFD(x_zero))
	    x_zero = (1.0d0 + ncols) / 2.0d0
	y_zero = clgetd ("y_zero")
	if (IS_INDEFD(y_zero))
	    y_zero = (1.0d0 + nlines) / 2.0d0
	xi_zero = clgetd ("xi_zero")
	if (IS_INDEFD(xi_zero))
	    xi_zero = 0.0d0
	eta_zero = clgetd ("eta_zero")
	if (IS_INDEFD(eta_zero))
	    eta_zero = 0.0d0

	# Get the image scale in " / pixel and the ratio of x to y scales.
	scale = clgetd ("scale")
	if (IS_INDEFD(scale))
	    scale = 1.0d0
	scale = DEGTORAD (scale / 3600.0d0)
	ratio = clgetd ("ratio")
	if (IS_INDEFD(ratio))
	    ratio = 1.0d0

	# Get the rotation and ske in degrees.
	xrot = clgetd ("xrot")
	if (IS_INDEFD(xrot))
	    xrot = 0.0d0
	yrot = clgetd ("yrot")
	if (IS_INDEFD(yrot))
	    yrot = 0.0d0

	# Get the assumed image tangent point in hours and degrees.
	ra_tan = clgetd ("ra_tan")
	if (IS_INDEFD(ra_tan))
	    ra_tan = 0.0d0
	dec_tan = clgetd ("dec_tan")
	if (IS_INDEFD(dec_tan))
	    dec_tan = 0.0d0
	cosd = cos (DEGTORAD(dec_tan))
	sind = sin (DEGTORAD(dec_tan))

	# Get the tangent point error.
	dra_tan = clgetd ("dra_tan")
	if (IS_INDEFD(dra_tan))
	    dra_tan = 0.0d0
	ddec_tan = clgetd ("ddec_tan")
	if (IS_INDEFD(ddec_tan))
	    ddec_tan = 0.0d0

	# Get the tilt error.
	tra = clgetd ("tra")
	if (IS_INDEFD(tra))
	    tra = 0.0d0
	tdec = clgetd ("tdec")
	if (IS_INDEFD(tdec))
	    tdec = 0.0d0

	# Get the cubic distortion term
	q1 = clgetd ("q3ra")
	if (IS_INDEFD(q1))
	    q1 = 0.0d0
	q2 = clgetd ("q3dec")
	if (IS_INDEFD(q2))
	    q2 = 0.0d0
	q3 = clgetd ("q3")
	if (IS_INDEFD(q3))
	    q3 = 0.0d0

	# Compute the x and y grid.
	xstep = (ncols - 1.0d0) / (ncgrid - 1.0d0)
	ystep = (nlines - 1.0d0) / (nlgrid - 1.0d0)
	npts = 0
	y = 1.0d0
	do j = 1, nlgrid {
	    x = 1.0d0
	    do i = 1, ncgrid {
		npts = npts + 1
		xpix[npts] = x
		ypix[npts] = y
		dxi[npts] = 0.0d0
		deta[npts] = 0.0d0
		x = x + xstep
	    }
	    y = y + ystep
	}

	# Compute the linear part of the plate solution.
	do i = 1, npts {
	    xi[i] = xi_zero + scale * (xpix[i] - x_zero) *
	        cos (DEGTORAD(xrot)) - scale * ratio * (ypix[i] - y_zero) *
		sin(DEGTORAD(yrot)) 
	    eta[i] = eta_zero +  scale * (xpix[i] - x_zero) *
	        sin(DEGTORAD(xrot)) + scale * ratio * (ypix[i] - y_zero) *
		cos(DEGTORAD(yrot)) 
	}

	# Estimate the tilt terms.
	dra = DEGTORAD(tra / 60.0d0)
	ddec = DEGTORAD(tdec / 60.0d0)
	c1 = cosd * dra
	f1 = ddec
	do i = 1, npts {
	    ddxi = c1 * xi[i] ** 2 + f1 * xi[i] * eta[i]
	    ddeta = f1 * xi[i] * eta[i] + c1 * eta[i] ** 2
	    dxi[i] = dxi[i] + ddxi
	    deta[i] = deta[i] + ddeta
	}

	# Compute the components of the centering error.
	dra = DEGTORAD(dra_tan / 60.0d0)
	ddec = DEGTORAD(ddec_tan / 60.0d0)
	c1 = cosd * dra
	b1 = sind * dra
	f1 = ddec
	do i = 1, npts {
	    ddxi = c1 - b1 * eta[i] + c1 * xi[i] ** 2 + f1 * xi[i] *
	        eta[i]
	    ddeta = f1 + b1 * xi[i] + f1 * eta[i] ** 2 + c1 * xi[i] *
	        eta[i]
	    dxi[i] = dxi[i] + ddxi
	    deta[i] = deta[i] + ddeta
	}

	# Compute the radial distortion terms
	dra = DEGTORAD(q1 / 60.0d0)
	ddec = DEGTORAD(q2 / 60.0d0)
	c1 = -cosd * dra * q3
	f1 = -ddec * q3
	do i = 1, npts {
	    ddxi = c1 * (3.0d0 * xi[i] ** 2 + eta[i] ** 2) + 2.0d0 * f1 *
	        xi[i] * eta[i] + q3 * xi[i] * (xi[i] ** 2 + eta[i] ** 2)
	    ddeta = 2.0d0 * c1 * xi[i] * eta[i] + f1 * (xi[i] ** 2 + 3.0d0 *
	        eta[i] ** 2) + q3 * eta[i] * (xi[i] ** 2 + eta[i] ** 2)
	    dxi[i] = dxi[i] - ddxi
	    deta[i] = deta[i] - ddeta
	}


	# Estimate the refraction and aberration terms.

	# Compute the cubic distortion correction.
	# Do the correction
	do i = 1, npts {
	    xi[i] = xi[i] + dxi[i]
	    eta[i] = eta[i] + deta[i]
	}

	# Print the results.
	do i = 1, npts {
	    rpix = sqrt ((xpix[i] - x_zero) ** 2 + (ypix[i] - y_zero) ** 2)
	    if (ypix[i] == y_zero && xpix[i] == x_zero)
		theta = 0.0d0
	    else
	        theta = RADTODEG(atan2 (ypix[i] - y_zero, xpix[i] - x_zero))
	    #if (theta < 0.0d0)
		#theta = theta + 360.0d0
	    rstd = sqrt ((xi[i] - xi_zero) ** 2 + (eta[i] - eta_zero) ** 2)
	    if (eta[i] == eta_zero && xi[i] == xi_zero)
		tstd = 0.0d0
	    else
	        tstd = RADTODEG(atan2 (eta[i] - eta_zero, xi[i] - xi_zero))
	    #if (tstd < 0.0d0)
		#tstd = tstd + 360.0d0
	    call printf ("%12g %12g  %12g %12g  %12g %12g  %12g %12g\n")
		call pargd (xpix[i])
		call pargd (ypix[i])
		call pargd (RADTODEG(xi[i]) * 3600.0d0)
		call pargd (RADTODEG(eta[i]) * 3600.0d0)
		call pargd (rpix)
		call pargd (theta)
		call pargd (RADTODEG(rstd) * 3600.0d0)
		call pargd (tstd)
	}
end