1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
include <math.h>
task pltmodel = t_pltmodel
procedure t_pltmodel()
double x_zero, y_zero, xi_zero, eta_zero, ra_tan, dec_tan, scale, ratio
double xrot, yrot, dra_tan, ddec_tan, x, y, xstep, ystep, tra, tdec
double xpix[1000], ypix[1000], xi[1000], eta[1000], dxi[1000], deta[1000]
double cosd, sind, dra, ddec, c1, f1, b1, ddxi, ddeta, q1, q2, q3
double rpix, theta, rstd, tstd
int i, j, ncols, nlines, ncgrid, nlgrid, npts
double clgetd()
int clgeti()
begin
# Get the image size.
ncols = clgeti ("ncols")
nlines = clgeti ("nlines")
ncgrid = clgeti ("ncgrid")
nlgrid = clgeti ("nlgrid")
# Get the image zero point in pixels.
x_zero = clgetd ("x_zero")
if (IS_INDEFD(x_zero))
x_zero = (1.0d0 + ncols) / 2.0d0
y_zero = clgetd ("y_zero")
if (IS_INDEFD(y_zero))
y_zero = (1.0d0 + nlines) / 2.0d0
xi_zero = clgetd ("xi_zero")
if (IS_INDEFD(xi_zero))
xi_zero = 0.0d0
eta_zero = clgetd ("eta_zero")
if (IS_INDEFD(eta_zero))
eta_zero = 0.0d0
# Get the image scale in " / pixel and the ratio of x to y scales.
scale = clgetd ("scale")
if (IS_INDEFD(scale))
scale = 1.0d0
scale = DEGTORAD (scale / 3600.0d0)
ratio = clgetd ("ratio")
if (IS_INDEFD(ratio))
ratio = 1.0d0
# Get the rotation and ske in degrees.
xrot = clgetd ("xrot")
if (IS_INDEFD(xrot))
xrot = 0.0d0
yrot = clgetd ("yrot")
if (IS_INDEFD(yrot))
yrot = 0.0d0
# Get the assumed image tangent point in hours and degrees.
ra_tan = clgetd ("ra_tan")
if (IS_INDEFD(ra_tan))
ra_tan = 0.0d0
dec_tan = clgetd ("dec_tan")
if (IS_INDEFD(dec_tan))
dec_tan = 0.0d0
cosd = cos (DEGTORAD(dec_tan))
sind = sin (DEGTORAD(dec_tan))
# Get the tangent point error.
dra_tan = clgetd ("dra_tan")
if (IS_INDEFD(dra_tan))
dra_tan = 0.0d0
ddec_tan = clgetd ("ddec_tan")
if (IS_INDEFD(ddec_tan))
ddec_tan = 0.0d0
# Get the tilt error.
tra = clgetd ("tra")
if (IS_INDEFD(tra))
tra = 0.0d0
tdec = clgetd ("tdec")
if (IS_INDEFD(tdec))
tdec = 0.0d0
# Get the cubic distortion term
q1 = clgetd ("q3ra")
if (IS_INDEFD(q1))
q1 = 0.0d0
q2 = clgetd ("q3dec")
if (IS_INDEFD(q2))
q2 = 0.0d0
q3 = clgetd ("q3")
if (IS_INDEFD(q3))
q3 = 0.0d0
# Compute the x and y grid.
xstep = (ncols - 1.0d0) / (ncgrid - 1.0d0)
ystep = (nlines - 1.0d0) / (nlgrid - 1.0d0)
npts = 0
y = 1.0d0
do j = 1, nlgrid {
x = 1.0d0
do i = 1, ncgrid {
npts = npts + 1
xpix[npts] = x
ypix[npts] = y
dxi[npts] = 0.0d0
deta[npts] = 0.0d0
x = x + xstep
}
y = y + ystep
}
# Compute the linear part of the plate solution.
do i = 1, npts {
xi[i] = xi_zero + scale * (xpix[i] - x_zero) *
cos (DEGTORAD(xrot)) - scale * ratio * (ypix[i] - y_zero) *
sin(DEGTORAD(yrot))
eta[i] = eta_zero + scale * (xpix[i] - x_zero) *
sin(DEGTORAD(xrot)) + scale * ratio * (ypix[i] - y_zero) *
cos(DEGTORAD(yrot))
}
# Estimate the tilt terms.
dra = DEGTORAD(tra / 60.0d0)
ddec = DEGTORAD(tdec / 60.0d0)
c1 = cosd * dra
f1 = ddec
do i = 1, npts {
ddxi = c1 * xi[i] ** 2 + f1 * xi[i] * eta[i]
ddeta = f1 * xi[i] * eta[i] + c1 * eta[i] ** 2
dxi[i] = dxi[i] + ddxi
deta[i] = deta[i] + ddeta
}
# Compute the components of the centering error.
dra = DEGTORAD(dra_tan / 60.0d0)
ddec = DEGTORAD(ddec_tan / 60.0d0)
c1 = cosd * dra
b1 = sind * dra
f1 = ddec
do i = 1, npts {
ddxi = c1 - b1 * eta[i] + c1 * xi[i] ** 2 + f1 * xi[i] *
eta[i]
ddeta = f1 + b1 * xi[i] + f1 * eta[i] ** 2 + c1 * xi[i] *
eta[i]
dxi[i] = dxi[i] + ddxi
deta[i] = deta[i] + ddeta
}
# Compute the radial distortion terms
dra = DEGTORAD(q1 / 60.0d0)
ddec = DEGTORAD(q2 / 60.0d0)
c1 = -cosd * dra * q3
f1 = -ddec * q3
do i = 1, npts {
ddxi = c1 * (3.0d0 * xi[i] ** 2 + eta[i] ** 2) + 2.0d0 * f1 *
xi[i] * eta[i] + q3 * xi[i] * (xi[i] ** 2 + eta[i] ** 2)
ddeta = 2.0d0 * c1 * xi[i] * eta[i] + f1 * (xi[i] ** 2 + 3.0d0 *
eta[i] ** 2) + q3 * eta[i] * (xi[i] ** 2 + eta[i] ** 2)
dxi[i] = dxi[i] - ddxi
deta[i] = deta[i] - ddeta
}
# Estimate the refraction and aberration terms.
# Compute the cubic distortion correction.
# Do the correction
do i = 1, npts {
xi[i] = xi[i] + dxi[i]
eta[i] = eta[i] + deta[i]
}
# Print the results.
do i = 1, npts {
rpix = sqrt ((xpix[i] - x_zero) ** 2 + (ypix[i] - y_zero) ** 2)
if (ypix[i] == y_zero && xpix[i] == x_zero)
theta = 0.0d0
else
theta = RADTODEG(atan2 (ypix[i] - y_zero, xpix[i] - x_zero))
#if (theta < 0.0d0)
#theta = theta + 360.0d0
rstd = sqrt ((xi[i] - xi_zero) ** 2 + (eta[i] - eta_zero) ** 2)
if (eta[i] == eta_zero && xi[i] == xi_zero)
tstd = 0.0d0
else
tstd = RADTODEG(atan2 (eta[i] - eta_zero, xi[i] - xi_zero))
#if (tstd < 0.0d0)
#tstd = tstd + 360.0d0
call printf ("%12g %12g %12g %12g %12g %12g %12g %12g\n")
call pargd (xpix[i])
call pargd (ypix[i])
call pargd (RADTODEG(xi[i]) * 3600.0d0)
call pargd (RADTODEG(eta[i]) * 3600.0d0)
call pargd (rpix)
call pargd (theta)
call pargd (RADTODEG(rstd) * 3600.0d0)
call pargd (tstd)
}
end
|