1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
include <imhdr.h>
include <ctype.h>
include <error.h>
# SETAIRMASS -- Compute the airmass for a series of images and optionally
# store these in the image header.
# The exposure time is assumed to be in seconds. There is no provision
# for observatories that save the begin and end integration times in
# the header but not the exposure duration. Note that shutter closings
# (due to clouds) void the assumptions about effective airmass.
# Possible keyword input and output time stamps
define AIR_TYPES "|beginning|middle|end|effective|"
define BEGINNING 1
define MIDDLE 2
define END 3
define EFFECTIVE 4
define UT_DEF 0D0 # for precession if the keyword is missing
define SOLTOSID (($1)*1.00273790935d0)
# T_SETAIRMASS -- Read the parameters, loop over the images using Stetson's
# rule, print out answers and update the header
procedure t_setairmass()
pointer imlist, im, obs
pointer sp, input, observatory, date_key, exp_key, air_key, utm_key, ut_hms
pointer ra_key, dec_key, eqn_key, st_key, ut_key, datestr
int intype, outtype, year, month, day, day1, fmt
bool show, update, override, newobs, obshead
double dec, latitude, exptime, scale, jd
double ha, ha_beg, ha_mid, ha_end, ut, ut_mid
double airm_beg, airm_end, airm_mid, airm_eff
bool clgetb()
int imtgetim(), clgwrd(), imaccf(), dtm_encode()
pointer imtopenp(), immap()
double clgetd(), airmassx(), obsgetd(), ast_date_to_julday()
errchk obsobpen, obsgetd, sa_rheader, airmassx, obsimopen
begin
call smark (sp)
call salloc (input, SZ_FNAME, TY_CHAR)
call salloc (observatory, SZ_FNAME, TY_CHAR)
call salloc (ra_key, SZ_FNAME, TY_CHAR)
call salloc (dec_key, SZ_FNAME, TY_CHAR)
call salloc (eqn_key, SZ_FNAME, TY_CHAR)
call salloc (st_key, SZ_FNAME, TY_CHAR)
call salloc (ut_key, SZ_FNAME, TY_CHAR)
call salloc (date_key, SZ_FNAME, TY_CHAR)
call salloc (exp_key, SZ_FNAME, TY_CHAR)
call salloc (air_key, SZ_FNAME, TY_CHAR)
call salloc (utm_key, SZ_FNAME, TY_CHAR)
call salloc (ut_hms, SZ_FNAME, TY_CHAR)
call salloc (datestr, SZ_FNAME, TY_CHAR)
# Get the parameters
imlist = imtopenp ("images")
intype = clgwrd ("intype", Memc[input], SZ_FNAME, AIR_TYPES)
call clgstr ("observatory", Memc[observatory], SZ_FNAME)
call clgstr ("ra", Memc[ra_key], SZ_FNAME)
call clgstr ("dec", Memc[dec_key], SZ_FNAME)
call clgstr ("equinox", Memc[eqn_key], SZ_FNAME)
call clgstr ("st", Memc[st_key], SZ_FNAME)
call clgstr ("ut", Memc[ut_key], SZ_FNAME)
call clgstr ("date", Memc[date_key], SZ_FNAME)
call clgstr ("exposure", Memc[exp_key], SZ_FNAME)
call clgstr ("airmass", Memc[air_key], SZ_FNAME)
call clgstr ("utmiddle", Memc[utm_key], SZ_FNAME)
scale = clgetd ("scale")
# just to be neat
call strupr (Memc[date_key])
call strupr (Memc[exp_key])
call strupr (Memc[air_key])
call strupr (Memc[utm_key])
show = clgetb ("show")
update = clgetb ("update")
# Open observatory later.
obs = NULL
if (update) {
outtype = clgwrd ("outtype", Memc[input], SZ_FNAME, AIR_TYPES)
override = clgetb ("override")
}
# Print a header line (the # should imply a comment to another task)
if (show) {
call printf ("# Image UT middle ")
call printf ("effective begin middle end updated\n")
} else if (!update)
call eprintf ("WARNING: Image headers are not updated\n")
# Loop over all images
while (imtgetim (imlist, Memc[input], SZ_FNAME) != EOF) {
iferr {
if (update)
im = immap (Memc[input], READ_WRITE, 0)
else
im = immap (Memc[input], READ_ONLY, 0)
} then {
call erract (EA_WARN)
next
}
iferr {
call sa_rheader (im, Memc[ra_key], Memc[dec_key],
Memc[eqn_key], Memc[st_key], Memc[ut_key], Memc[date_key],
Memc[exp_key], ha, dec, year, month, day, ut, exptime,
fmt)
# Calculate the mid-UT and HA's for the various input types
switch (intype) {
case BEGINNING:
ha_beg = ha
ha_mid = ha + SOLTOSID(exptime) / 2.
ha_end = ha + SOLTOSID(exptime)
if (IS_INDEFD(ut))
ut_mid = INDEFD
else
ut_mid = ut + exptime / 2.
case MIDDLE:
ha_beg = ha - SOLTOSID(exptime) / 2.
ha_mid = ha
ha_end = ha + SOLTOSID(exptime) / 2.
if (IS_INDEFD(ut))
ut_mid = INDEFD
else
ut_mid = ut
case END:
ha_beg = ha - SOLTOSID(exptime)
ha_mid = ha - SOLTOSID(exptime) / 2.
ha_end = ha
if (IS_INDEFD(ut))
ut_mid = INDEFD
else
ut_mid = ut - exptime / 2.
default:
call error (1, "Bad switch in t_setairmass")
}
# Adjust for possible change of date in ut_mid.
day1 = day
jd = ast_date_to_julday (year, month, day, ut_mid)
call ast_julday_to_date (jd, year, month, day, ut_mid)
# Save the mid-UT as a sexigesimal string for output
call sprintf (Memc[ut_hms], SZ_FNAME, "%h")
call pargd (ut_mid)
# Compute the beginning, middle and ending airmasses
# First get the latitude from the observatory database.
call obsimopen (obs, im, Memc[observatory], NO, newobs, obshead)
if (newobs)
call obslog (obs, "SETAIRMASS", "latitude", STDOUT)
latitude = obsgetd (obs, "latitude")
airm_beg = airmassx (ha_beg, dec, latitude, scale)
airm_mid = airmassx (ha_mid, dec, latitude, scale)
airm_end = airmassx (ha_end, dec, latitude, scale)
# Combine as suggested by P. Stetson (Simpson's rule)
airm_eff = (airm_beg + 4.*airm_mid + airm_end) / 6.
} then {
call erract (EA_WARN)
call imunmap (im)
next
}
if (show) {
call printf ("%20s %11s %7.4f %7.4f %7.4f %7.4f %b\n")
call pargstr (Memc[input])
call pargstr (Memc[ut_hms])
call pargd (airm_eff)
call pargd (airm_beg)
call pargd (airm_mid)
call pargd (airm_end)
call pargb (update)
call flush (STDOUT)
}
if (update) {
if (imaccf (im, Memc[air_key]) == NO || override)
switch (outtype) {
case BEGINNING:
call imaddr (im, Memc[air_key], real(airm_beg))
case MIDDLE:
call imaddr (im, Memc[air_key], real(airm_mid))
case END:
call imaddr (im, Memc[air_key], real(airm_end))
case EFFECTIVE:
call imaddr (im, Memc[air_key], real(airm_eff))
default:
call error (1, "Bad switch in t_setairmass")
}
# Should probably update a date keyword as well
if ((imaccf (im, Memc[utm_key]) == NO || override) &&
(! IS_INDEFD(ut_mid))) {
# if (fmt == NO && day == day1)
# call imastr (im, Memc[utm_key], Memc[ut_hms])
# else if (dtm_encode (Memc[datestr], SZ_FNAME,
# year, month, day, utmid, 2, 0) > 0)
# call imastr (im, Memc[utm_key], Memc[datestr])
if (dtm_encode (Memc[datestr], SZ_FNAME,
year, month, day, utmid, 2, 0) > 0)
call imastr (im, Memc[utm_key], Memc[datestr])
}
}
call imunmap (im)
}
call obsclose (obs)
call sfree (sp)
end
# SA_RHEADER -- derive the ha, dec, ut, and exptime from the header.
define SZ_TOKEN 2
procedure sa_rheader (im, ra_key, dec_key, eqn_key, st_key, ut_key, dkey, ekey,
ha, dec, year, month, day, ut, exptime, fmt)
pointer im #I imio pointer
char ra_key[ARB] #I date keyword (hh.hhh or hh:mm:ss.s)
char dec_key[ARB] #I date keyword (dd.ddd or dd:mm:ss.s)
char eqn_key[ARB] #I date keyword (yyyy.yyy)
char st_key[ARB] #I date keyword (hh.hhh or hh:mm:ss.s)
char ut_key[ARB] #I date keyword (hh.hhh or hh:mm:ss.s)
char dkey[ARB] #I date keyword (YYYY-MM-DDTHH:MM:SS.S or DD/MM/YY)
char ekey[ARB] #I exposure keyword (seconds)
double ha #O hour angle
double dec #O current epoch declination
int year #O year
int month #O month
int day #O day
double ut #O universal time
double exptime #O exposure time (hours)
int fmt #O Date format?
pointer date, sp
double ra1, dec1, epoch1, ra2, dec2, epoch2, st2, ut2
int ip, flags
double imgetd()
int dtm_decode(), strmatch()
bool fp_equald()
errchk imgetd, imgstr
begin
call smark (sp)
call salloc (date, SZ_LINE, TY_CHAR)
iferr {
# `1' is the coordinate epoch, `2' is the observation epoch
ra1 = imgetd (im, ra_key)
ip = strmatch (ra_key, "^{CRVAL}")
if (ip > 0) {
if (IS_DIGIT(ra_key[ip]) && TO_INTEG(ra_key[ip] > 0))
ra1 = ra1 / 15.0d0
}
dec1 = imgetd (im, dec_key)
st2 = imgetd (im, st_key)
# Parse UT keyword in either hours or date.
fmt = YES
call imgstr (im, ut_key, Memc[date], SZ_LINE)
if (dtm_decode (Memc[date],year,month,day,ut,flags) == ERR) {
iferr (ut = imgetd (im, ut_key))
call error (1, "Error in ut keyword")
fmt = NO
}
# Parse the date.
call imgstr (im, dkey, Memc[date], SZ_LINE)
if (dtm_decode (Memc[date],year,month,day,ut2,flags) == ERR)
call error (1, "Error in date keyword")
iferr (epoch1 = imgetd (im, eqn_key))
epoch1 = INDEFD
if (!(fp_equald (epoch1, double(0.)) || IS_INDEFD(epoch1))) {
if (IS_INDEFD(ut))
call ast_date_to_epoch (year, month, day, UT_DEF, epoch2)
else
call ast_date_to_epoch (year, month, day, ut, epoch2)
call astprecess (ra1, dec1, epoch1, ra2, dec2, epoch2)
} else {
ra2 = ra1
dec2 = dec1
call eprintf ("\tCoords not precessed for %s: check %s\n")
call pargstr (IM_HDRFILE(im))
call pargstr (eqn_key)
call flush (STDERR)
}
# don't use the output arguments internally
ha = st2 - ra2
dec = dec2
exptime = imgetd (im, ekey) / 3600.d0
} then {
call sfree (sp)
call eprintf ("Problem reading header for %s:\n")
call pargstr (IM_HDRFILE(im))
call flush (STDERR)
call erract (EA_ERROR)
}
call sfree (sp)
end
|