1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
include <mach.h>
include <gset.h>
include <math.h>
include <math/curfit.h>
include <math/iminterp.h>
include "../lib/apphotdef.h"
include "../lib/noisedef.h"
include "../lib/fitskydef.h"
include "../lib/photdef.h"
include "../lib/radprofdef.h"
include "../lib/apphot.h"
include "../lib/phot.h"
include "../lib/radprof.h"
# AP_FRPROF -- Compute the radial profile of an object.
int procedure ap_frprof (ap, im, wx, wy, pier)
pointer ap # pointer to the apphot structure
pointer im # pointer to the IRAF image
real wx, wy # object coordinates
int pier # photometry error
int i, ier, fier, nxpts, nypts, nrpts, order
pointer sky, rprof, cv, asi
real datamin, datamax, step, rmin, rmax, inorm, tinorm
int ap_rpbuf(), ap_rmag(), ap_rpmeasure(), ap_rpiter()
real asigrl(), cveval(), ap_rphalf()
errchk cvinit(), cvfit(), cvvector(), cveval(), cvfree()
errchk asinit(), asifit(), asigrl(), asifree()
errchk ap_rpmeasure(), ap_rpiter()
begin
# Set up some apphot pointers.
sky = AP_PSKY(ap)
rprof = AP_RPROF(ap)
# Initialize.
AP_RPXCUR(rprof) = wx
AP_RPYCUR(rprof) = wy
call ap_rpindef (ap)
if (IS_INDEFR(wx) || IS_INDEFR(wy)) {
AP_ORPXCUR(rprof) = INDEFR
AP_ORPYCUR(rprof) = INDEFR
} else {
switch (AP_WCSOUT(ap)) {
case WCS_WORLD, WCS_PHYSICAL:
call ap_ltoo (ap, wx, wy, AP_ORPXCUR(rprof),
AP_ORPYCUR(rprof), 1)
case WCS_TV:
call ap_ltov (im, wx, wy, AP_ORPXCUR(rprof),
AP_ORPYCUR(rprof), 1)
default:
AP_ORPXCUR(rprof) = wx
AP_ORPYCUR(rprof) = wy
}
}
# Get the pixels and check for error conditions.
if (IS_INDEFR(wx) || IS_INDEFR(wy)) {
pier = AP_APERT_NOAPERT
return (AP_RP_NOPROFILE)
} else if (IS_INDEFR(AP_SKY_MODE(sky))) {
pier = AP_APERT_NOSKYMODE
return (AP_RP_NOSKYMODE)
} else if (ap_rpbuf (ap, im, wx, wy) == AP_RP_NOPROFILE) {
pier = AP_APERT_NOAPERT
return (AP_RP_NOPROFILE)
}
# Do the photometry.
pier = ap_rmag (ap)
# Initialize some common variables.
nxpts = AP_RPNX(rprof)
nypts = AP_RPNY(rprof)
nrpts = AP_RPNPTS(rprof)
# Initialize the radial profile curve fitting.
step = AP_SCALE(ap) * AP_RPSTEP(rprof)
order = max (1, min (AP_RPORDER(rprof), nxpts * nypts - 3))
rmin = 0.0
rmax = (nrpts - 1) * step
if (IS_INDEFR(AP_DATAMIN(ap)))
datamin = -MAX_REAL
else
datamin = AP_DATAMIN(ap) - AP_SKY_MODE(sky)
if (IS_INDEFR(AP_DATAMAX(ap)))
datamax = MAX_REAL
else
datamax = AP_DATAMAX(ap) - AP_SKY_MODE(sky)
# Fit the curve.
call cvinit (cv, SPLINE3, order, rmin, rmax)
call asubkr (Memr[AP_RPIX(rprof)], AP_SKY_MODE(sky),
Memr[AP_RPIX(rprof)], nxpts * nypts)
fier = ap_rpmeasure (cv, Memr[AP_RPIX(rprof)], nxpts, nypts,
AP_RPXC(rprof), AP_RPYC(rprof), datamin, datamax, rmax,
AP_RPNDATA(rprof), AP_RPNBAD(rprof))
# Perform the rejection cycle.
if (fier != NO_DEG_FREEDOM && AP_RPNREJECT(rprof) > 0 &&
AP_RPKSIGMA(rprof) > 0.0)
AP_RPNDATAREJ(rprof) = ap_rpiter (cv, Memr[AP_RPIX(rprof)], nxpts,
nypts, AP_RPXC(rprof), AP_RPYC(rprof), rmax, datamin, datamax,
AP_RPNREJECT(rprof), AP_RPKSIGMA(rprof), fier)
else
AP_RPNDATAREJ(rprof) = 0
AP_RPNDATA(rprof) = AP_RPNDATA(rprof) - AP_RPNDATAREJ(rprof)
AP_RPNDATAREJ(rprof) = AP_RPNDATAREJ(rprof) + AP_RPNBAD(rprof)
# Evaluate the fit.
if (fier != NO_DEG_FREEDOM) {
# Evaluate the profile.
do i = 1, nrpts
Memr[AP_RPDIST(rprof)+i-1] = (i - 1) * step
call cvvector (cv, Memr[AP_RPDIST(rprof)],
Memr[AP_INTENSITY(rprof)], nrpts)
# Evaluate the integral.
call asiinit (asi, II_SPLINE3)
call amulr (Memr[AP_RPDIST(rprof)], Memr[AP_INTENSITY(rprof)],
Memr[AP_TINTENSITY(rprof)], nrpts)
call asifit (asi, Memr[AP_TINTENSITY(rprof)], nrpts)
Memr[AP_TINTENSITY(rprof)] = 0.0
do i = 2, nrpts
Memr[AP_TINTENSITY(rprof)+i-1] = Memr[AP_TINTENSITY(rprof)+
i-2] + asigrl (asi, real (i - 1), real (i))
call amulkr (Memr[AP_TINTENSITY(rprof)], real (TWOPI) * step,
Memr[AP_TINTENSITY(rprof)], nrpts)
call asifree (asi)
# Normalize the radial profile.
inorm = cveval (cv, 0.0)
if (inorm != 0.0)
call adivkr (Memr[AP_INTENSITY(rprof)], inorm,
Memr[AP_INTENSITY(rprof)], nrpts)
call apsetr (ap, INORM, inorm)
# Normalize the total intensity.
tinorm = Memr[AP_TINTENSITY(rprof)+AP_RPNPTS(rprof)-1]
if (tinorm != 0.0)
call adivkr (Memr[AP_TINTENSITY(rprof)], tinorm,
Memr[AP_TINTENSITY(rprof)], nrpts)
call apsetr (ap, TNORM, tinorm)
# Compute the FWHMPSF.
call apsetr (ap, RPFWHM, 2.0 * ap_rphalf (Memr[AP_RPDIST(rprof)],
Memr[AP_INTENSITY(rprof)], nrpts))
}
# Set the error code and return.
call cvfree (cv)
if (fier == NO_DEG_FREEDOM)
ier = AP_RP_NPTS_TOO_SMALL
else if (fier == SINGULAR)
ier = AP_RP_SINGULAR
# Free space.
return (ier)
end
# AP_RMAG -- Compute the magnitudes for the radial profile
int procedure ap_rmag (ap)
pointer ap # pointer to the apphot structure
int pier, nap
pointer sp, nse, sky, phot, rprof, aperts
real datamin, datamax, zmag
begin
# Initialize some apphot pointers.
nse = AP_NOISE(ap)
sky = AP_PSKY(ap)
phot = AP_PPHOT(ap)
rprof = AP_RPROF(ap)
# Allocate working space.
call smark (sp)
call salloc (aperts, AP_NAPERTS(phot), TY_REAL)
# Check for out of bounds apertures.
call ap_maxap (ap, pier)
# Define the good data minimum and maximum for photometry.
if (IS_INDEFR(AP_DATAMIN(ap)))
datamin = -MAX_REAL
else
datamin = AP_DATAMIN(ap)
if (IS_INDEFR(AP_DATAMAX(ap)))
datamax = MAX_REAL
else
datamax = AP_DATAMAX(ap)
# Compute the sums.
call ap_arrayr (ap, APERTS, Memr[aperts])
call amulkr (Memr[aperts], AP_SCALE(ap), Memr[aperts], AP_NAPERTS(phot))
if (IS_INDEFR(AP_DATAMIN(ap)) && IS_INDEFR(AP_DATAMAX(ap))) {
call ap_rmmeasure (Memr[AP_RPIX(rprof)], AP_RPNX(rprof),
AP_RPNY(rprof), AP_RPXC(rprof), AP_RPYC(rprof), Memr[aperts],
Memd[AP_SUMS(phot)], Memd[AP_AREA(phot)], AP_NMAXAP(phot))
AP_NMINAP(phot) = AP_NMAXAP(phot) + 1
} else
call ap_brmmeasure (Memr[AP_RPIX(rprof)], AP_RPNX(rprof),
AP_RPNY(rprof), AP_RPXC(rprof), AP_RPYC(rprof), datamin,
datamax, Memr[aperts], Memd[AP_SUMS(phot)],
Memd[AP_AREA(phot)], AP_NMAXAP(phot), AP_NMINAP(phot))
# Check for bad pixels.
if ((pier == AP_OK) && (AP_NMINAP(phot) <= AP_NMAXAP(phot)))
pier = AP_APERT_BADDATA
nap = min (AP_NMINAP(phot) - 1, AP_NMAXAP(phot))
# Compute the magnitudes.
zmag = AP_ZMAG(phot) + 2.5 * log10 (AP_ITIME(ap))
if (AP_POSITIVE(ap) == YES)
call apcopmags (Memd[AP_SUMS(phot)], Memd[AP_AREA(phot)],
Memr[AP_MAGS(phot)], Memr[AP_MAGERRS(phot)], nap,
AP_SKY_MODE(sky), AP_SKY_SIG(sky), AP_NSKY(sky), zmag,
AP_NOISEFUNCTION(nse), AP_EPADU(nse))
else
call apconmags (Memd[AP_SUMS(phot)], Memd[AP_AREA(phot)],
Memr[AP_MAGS(phot)], Memr[AP_MAGERRS(phot)], nap,
AP_SKY_MODE(sky), AP_SKY_SIG(sky), AP_NSKY(sky), zmag,
AP_NOISEFUNCTION(nse), AP_EPADU(nse), AP_READNOISE(nse))
call sfree (sp)
return (pier)
end
# AP_RPMEASURE -- Procedure to measure the flux and effective area in a set of
# apertures and accumulate the fit to the radial profile.
int procedure ap_rpmeasure (cv, pixels, nx, ny, wx, wy, datamin, datamax,
rmax, ndata, nbad)
pointer cv # pointer to curfit structure
real pixels[nx,ARB] # subraster pixel values
int nx, ny # dimensions of the subraster
real wx, wy # center of subraster
real datamin # minimum good data value
real datamax # maximum good data value
real rmax # the maximum radius
int ndata # the number of ok data points
int nbad # the number of bad data points
int i, j, ier
real weight, dy2, r2, rcv
begin
# Initialize.
ndata = 0
nbad = 0
call cvzero (cv)
# Loop over the pixels.
do j = 1, ny {
dy2 = (j - wy) ** 2
do i = 1, nx {
r2 = (i - wx) ** 2 + dy2
rcv = sqrt (r2)
if (rcv > rmax)
next
if (pixels[i,j] < datamin || pixels[i,j] > datamax) {
nbad = nbad + 1
} else {
call cvaccum (cv, rcv, pixels[i,j], weight, WTS_UNIFORM)
ndata = ndata + 1
}
}
}
call cvsolve (cv, ier)
return (ier)
end
# AP_RPITER -- Procedure to reject pixels from the fit.
int procedure ap_rpiter (cv, pixels, nx, ny, wx, wy, rmax, datamin, datamax,
niter, ksigma, fier)
pointer cv # pointer to the curfit structure
real pixels[nx,ARB] # pixel values
int nx, ny # dimensions of image subraster
real wx, wy # x and y coordinates of the center
real rmax # maximum radius value
real datamin # minimum good data value
real datamax # maximum good data value
int niter # maximum number of rejection cycles
real ksigma # ksigma rejection limit
int fier # fitting error code
int i, j, k, npts, ntreject, nreject
pointer sp, rtemp, w, ptr
real chisqr, diff, locut, hicut
real cveval()
errchk cveval, cvrject, cvsolve
begin
# Allocate the necessary space.
call smark (sp)
call salloc (rtemp, nx, TY_REAL)
call salloc (w, nx * ny, TY_REAL)
call amovkr (1.0, Memr[w], nx * ny)
# Set the weights of out of range and bad data points to 0.0.
ptr = w
do j = 1, ny {
call ap_ijtor (Memr[rtemp], nx, j, wx, wy)
do k = 1, nx {
if (Memr[rtemp+k-1] > rmax || pixels[k,j] < datamin ||
pixels[k,j] > datamax)
Memr[ptr+k-1] = 0.0
}
ptr = ptr + nx
}
ntreject = 0
do i = 1, niter {
# Compute the chisqr.
chisqr = 0.0
npts = 0
ptr = w
do j = 1, ny {
call ap_ijtor (Memr[rtemp], nx, j, wx, wy)
do k = 1, nx {
if (Memr[ptr+k-1] <= 0.0)
next
chisqr = chisqr + (pixels[k,j] - cveval (cv,
Memr[rtemp+k-1])) ** 2
npts = npts + 1
}
ptr = ptr + nx
}
# Compute the new limits.
if (npts > 1)
chisqr = sqrt (chisqr / (npts - 1))
else
chisqr = 0.0
locut = - ksigma * chisqr
hicut = ksigma * chisqr
# Reject pixels from the fit.
nreject = 0
ptr = w
do j = 1, ny {
call ap_ijtor (Memr[rtemp], nx, j, wx, wy)
do k = 1, nx {
if (Memr[ptr+k-1] <= 0.0)
next
diff = pixels[k,j] - cveval (cv, Memr[rtemp+k-1])
if (diff >= locut && diff <= hicut)
next
call cvrject (cv, Memr[rtemp+k-1], pixels[k,j], 1.0)
nreject = nreject + 1
Memr[ptr+k-1] = 0.0
}
ptr = ptr + nx
}
if (nreject == 0)
break
ntreject = ntreject + nreject
# Recompute the fit.
call cvsolve (cv, fier)
if (fier == NO_DEG_FREEDOM)
break
}
call sfree (sp)
return (ntreject)
end
# AP_RPHALF -- Compute the FWHM of the PSF.
real procedure ap_rphalf (radius, intensity, npts)
real radius[ARB] # radius in pixels
real intensity[ARB] # profile intensity
int npts # number of points
int i
real halfp
begin
# Seach for the appropriate interval.
do i = 1, npts
if (intensity[i] < 0.5)
break
# Compute the full width half maximum.
if (i == 1)
halfp = radius[1]
else if (i == npts && intensity[npts] >= 0.5)
halfp = radius[npts]
else
halfp = (radius[i] * (0.5 - intensity[i-1]) + radius[i-1] *
(intensity[i] - 0.5)) / (intensity[i] - intensity[i-1])
return (halfp)
end
|