1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
include "ccdred.h"
.help cor Feb87 noao.imred.ccdred
.nf ----------------------------------------------------------------------------
cor -- Process CCD image lines
These procedures are the heart of the CCD processing. They do the desired
set of processing operations on the image line data as efficiently as
possible. They are called by the PROC procedures. There are four procedures
one for each readout axis and one for short and real image data.
Some sets of operations are coded as single compound operations for efficiency.
To keep the number of combinations managable only the most common
combinations are coded as compound operations. The combinations
consist of any set of line overscan, column overscan, zero level, dark
count, and flat field and any set of illumination and fringe
correction. The corrections are applied in place to the output vector.
The column readout procedure is more complicated in order to handle
zero level and flat field corrections specified as one dimensional
readout corrections instead of two dimensional calibration images.
Column readout format is probably extremely rare and the 1D readout
corrections are used only for special types of data.
.ih
SEE ALSO
proc, ccdred.h
.endhelp -----------------------------------------------------------------------
$for (sr)
# COR1 -- Correct image lines with readout axis 1 (lines).
procedure cor1$t (cors, out, overscan, zero, dark, flat, illum,
fringe, n, darkscale, flatscale, illumscale, frgscale)
int cors[ARB] # Correction flags
PIXEL out[n] # Output data
real overscan # Overscan value
PIXEL zero[n] # Zero level correction
PIXEL dark[n] # Dark count correction
PIXEL flat[n] # Flat field correction
PIXEL illum[n] # Illumination correction
PIXEL fringe[n] # Fringe correction
int n # Number of pixels
real darkscale # Dark count scale factor
real flatscale # Flat field scale factor
real illumscale # Illumination scale factor
real frgscale # Fringe scale factor
int i, op
begin
op = cors[OVERSCAN] + cors[ZEROCOR] + cors[DARKCOR] + cors[FLATCOR]
switch (op) {
case O: # overscan
do i = 1, n
out[i] = out[i] - overscan
case Z: # zero level
do i = 1, n
out[i] = out[i] - zero[i]
case ZO: # zero level + overscan
do i = 1, n
out[i] = out[i] - overscan - zero[i]
case D: # dark count
do i = 1, n
out[i] = out[i] - darkscale * dark[i]
case DO: # dark count + overscan
do i = 1, n
out[i] = out[i] - overscan - darkscale * dark[i]
case DZ: # dark count + zero level
do i = 1, n
out[i] = out[i] - zero[i] - darkscale * dark[i]
case DZO: # dark count + zero level + overscan
do i = 1, n
out[i] = out[i] - overscan - zero[i] - darkscale * dark[i]
case F: # flat field
do i = 1, n
out[i] = out[i] * flatscale / flat[i]
case FO: # flat field + overscan
do i = 1, n
out[i] = (out[i] - overscan) * flatscale / flat[i]
case FZ: # flat field + zero level
do i = 1, n
out[i] = (out[i] - zero[i]) * flatscale / flat[i]
case FZO: # flat field + zero level + overscan
do i = 1, n
out[i] = (out[i] - overscan - zero[i]) * flatscale /
flat[i]
case FD: # flat field + dark count
do i = 1, n
out[i] = (out[i] - darkscale * dark[i]) * flatscale / flat[i]
case FDO: # flat field + dark count + overscan
do i = 1, n
out[i] = (out[i] - overscan - darkscale * dark[i]) *
flatscale / flat[i]
case FDZ: # flat field + dark count + zero level
do i = 1, n
out[i] = (out[i] - zero[i] - darkscale * dark[i]) *
flatscale / flat[i]
case FDZO: # flat field + dark count + zero level + overscan
do i = 1, n
out[i] = (out[i] - overscan - zero[i] -
darkscale * dark[i]) * flatscale / flat[i]
}
# Often these operations will not be performed so test for no
# correction rather than go through the switch.
op = cors[ILLUMCOR] + cors[FRINGECOR]
if (op != 0) {
switch (op) {
case I: # illumination
do i = 1, n
out[i] = out[i] * illumscale / illum[i]
case Q: # fringe
do i = 1, n
out[i] = out[i] - frgscale * fringe[i]
case QI: # fringe + illumination
do i = 1, n
out[i] = out[i]*illumscale/illum[i] - frgscale*fringe[i]
}
}
end
# COR2 -- Correct lines for readout axis 2 (columns). This procedure is
# more complex than when the readout is along the image lines because the
# zero level and/or flat field corrections may be single readout column
# vectors.
procedure cor2$t (line, cors, out, overscan, zero, dark, flat, illum,
fringe, n, zeroim, flatim, darkscale, flatscale, illumscale, frgscale)
int line # Line to be corrected
int cors[ARB] # Correction flags
PIXEL out[n] # Output data
real overscan[n] # Overscan value
PIXEL zero[n] # Zero level correction
PIXEL dark[n] # Dark count correction
PIXEL flat[n] # Flat field correction
PIXEL illum[n] # Illumination correction
PIXEL fringe[n] # Fringe correction
int n # Number of pixels
pointer zeroim # Zero level IMIO pointer (NULL if 1D vector)
pointer flatim # Flat field IMIO pointer (NULL if 1D vector)
real darkscale # Dark count scale factor
real flatscale # Flat field scale factor
real illumscale # Illumination scale factor
real frgscale # Fringe scale factor
PIXEL zeroval
real flatval
int i, op
begin
op = cors[OVERSCAN] + cors[ZEROCOR] + cors[DARKCOR] + cors[FLATCOR]
switch (op) {
case O: # overscan
do i = 1, n
out[i] = out[i] - overscan[i]
case Z: # zero level
if (zeroim != NULL)
do i = 1, n
out[i] = out[i] - zero[i]
else {
zeroval = zero[line]
do i = 1, n
out[i] = out[i] - zeroval
}
case ZO: # zero level + overscan
if (zeroim != NULL)
do i = 1, n
out[i] = out[i] - overscan[i] - zero[i]
else {
zeroval = zero[line]
do i = 1, n
out[i] = out[i] - overscan[i] - zeroval
}
case D: # dark count
do i = 1, n
out[i] = out[i] - darkscale * dark[i]
case DO: # dark count + overscan
do i = 1, n
out[i] = out[i] - overscan[i] - darkscale * dark[i]
case DZ: # dark count + zero level
if (zeroim != NULL)
do i = 1, n
out[i] = out[i] - zero[i] - darkscale * dark[i]
else {
zeroval = zero[line]
do i = 1, n
out[i] = out[i] - zeroval - darkscale * dark[i]
}
case DZO: # dark count + zero level + overscan
if (zeroim != NULL)
do i = 1, n
out[i] = out[i] - overscan[i] - zero[i] -
darkscale * dark[i]
else {
zeroval = zero[line]
do i = 1, n
out[i] = out[i] - overscan[i] - zeroval -
darkscale * dark[i]
}
case F: # flat field
if (flatim != NULL) {
do i = 1, n
out[i] = out[i] * flatscale / flat[i]
} else {
flatval = flatscale / flat[line]
do i = 1, n
out[i] = out[i] * flatval
}
case FO: # flat field + overscan
if (flatim != NULL) {
do i = 1, n
out[i] = (out[i] - overscan[i]) * flatscale / flat[i]
} else {
flatval = flatscale / flat[line]
do i = 1, n
out[i] = (out[i] - overscan[i]) * flatval
}
case FZ: # flat field + zero level
if (flatim != NULL) {
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - zero[i]) * flatscale / flat[i]
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - zeroval) * flatscale / flat[i]
}
} else {
flatval = flatscale / flat[line]
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - zero[i]) * flatval
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - zeroval) * flatval
}
}
case FZO: # flat field + zero level + overscan
if (flatim != NULL) {
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - overscan[i] - zero[i]) *
flatscale / flat[i]
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - overscan[i] - zeroval) *
flatscale / flat[i]
}
} else {
flatval = flatscale / flat[line]
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - overscan[i] - zero[i]) * flatval
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - overscan[i] - zeroval) * flatval
}
}
case FD: # flat field + dark count
if (flatim != NULL) {
do i = 1, n
out[i] = (out[i] - darkscale * dark[i]) * flatscale/flat[i]
} else {
flatval = flatscale / flat[line]
do i = 1, n
out[i] = (out[i] - darkscale * dark[i]) * flatval
}
case FDO: # flat field + dark count + overscan
if (flatim != NULL) {
do i = 1, n
out[i] = (out[i] - overscan[i] - darkscale * dark[i]) *
flatscale / flat[i]
} else {
flatval = flatscale / flat[line]
do i = 1, n
out[i] = (out[i] - overscan[i] - darkscale * dark[i]) *
flatval
}
case FDZ: # flat field + dark count + zero level
if (flatim != NULL) {
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - zero[i] - darkscale * dark[i]) *
flatscale / flat[i]
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - zeroval - darkscale * dark[i]) *
flatscale / flat[i]
}
} else {
flatval = flatscale / flat[line]
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - zero[i] - darkscale * dark[i]) *
flatval
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - zeroval - darkscale * dark[i]) *
flatval
}
}
case FDZO: # flat field + dark count + zero level + overscan
if (flatim != NULL) {
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - overscan[i] - zero[i] -
darkscale * dark[i]) * flatscale / flat[i]
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - overscan[i] - zeroval -
darkscale * dark[i]) * flatscale / flat[i]
}
} else {
flatval = flatscale / flat[line]
if (zeroim != NULL) {
do i = 1, n
out[i] = (out[i] - overscan[i] - zero[i] -
darkscale * dark[i]) * flatval
} else {
zeroval = zero[line]
do i = 1, n
out[i] = (out[i] - overscan[i] - zeroval -
darkscale * dark[i]) * flatval
}
}
}
# Often these operations will not be performed so test for no
# correction rather than go through the switch.
op = cors[ILLUMCOR] + cors[FRINGECOR]
if (op != 0) {
switch (op) {
case I: # illumination
do i = 1, n
out[i] = out[i] * illumscale / illum[i]
case Q: # fringe
do i = 1, n
out[i] = out[i] - frgscale * fringe[i]
case QI: # fringe + illumination
do i = 1, n
out[i] = out[i]*illumscale/illum[i] - frgscale*fringe[i]
}
}
end
$endfor
|