1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
include <math/curfit.h>
include <imhdr.h>
include <fset.h>
include <mach.h>
include <ctype.h>
include <error.h>
include <pkg/gtools.h>
include <pkg/xtanswer.h>
include "hdicfit/hdicfit.h"
# T_HDFIT -- Fit a curve. This task fits a characteristic
# curve to density and log exposure data read from an input
# database. The interactive curve fitting package is used.
# The database is updated to contain the values of the fit
# necessary to reinitialize the curfit package for performing
# the transformation in hdtoi.
procedure t_hdfit ()
pointer sp, fcn, device, db, gt, exp, wts, save, trans, weight
pointer dbfile, ic, den, errs
int db_list, order, interactive, nsave, nvals, wt_type, update
real ref_fog, real_fog
double fog, maxden
pointer ddb_map(), gt_init()
bool clgetb(), fp_equalr(), fp_equald()
int clpopni(), clgeti(), strncmp(), clgfil(), hd_fit()
real ic_getr()
begin
call smark (sp)
call salloc (fcn, SZ_FNAME, TY_CHAR)
call salloc (device, SZ_FNAME, TY_CHAR)
call salloc (trans, SZ_FNAME, TY_CHAR)
call salloc (weight, SZ_FNAME, TY_CHAR)
call salloc (dbfile, SZ_FNAME, TY_CHAR)
# Get cl parameters
db_list = clpopni ("database")
call clgstr ("function", Memc[fcn], SZ_FNAME)
call clgstr ("transform", Memc[trans], SZ_FNAME)
order = clgeti ("order")
# Decide which type of weighting the user wants
call clgstr ("weighting", Memc[weight], SZ_FNAME)
if (strncmp (Memc[weight], "none", 1) == 0)
wt_type = WT_NONE
else if (strncmp (Memc[weight], "user", 1) == 0)
wt_type = WT_USER
else if (strncmp (Memc[weight], "calc", 1) == 0)
wt_type = WT_CALC
else
call error (0, "Unrecognized weighting type")
# Initialize interactive curve fitting package.
gt = gt_init ()
call ic_open (ic)
call ic_pstr (ic, "function", Memc[fcn])
call ic_pstr (ic, "transform", Memc[trans])
call ic_puti (ic, "order", order)
call ic_pstr (ic, "ylabel", "Log Exposure")
call ic_pkey (ic, 5, 'y', 'u')
if (clgetb ("interactive")) {
interactive = YES
call clgstr ("device", Memc[device], SZ_FNAME)
} else {
interactive = NO
call strcpy ("", Memc[device], SZ_FNAME)
}
# Read information from each dlog file; accumulate number of values.
# The density (not fog subtracted) is returned. The density values
# are also sorted in increasing order.
call hd_rdloge (db_list, exp, den, wts, errs, nvals, fog, maxden,
wt_type)
if (nvals == 0)
call error (1, "T_HDFIT: No data values in sample")
call hd_sdloge (Memd[den], Memd[exp], Memd[wts], Memd[errs], nvals)
call ic_putr (ic, "fog", real(fog))
ref_fog = real (fog)
call ic_putr (ic, "rfog", ref_fog)
# Initialize the dtoi/icgfit interface.
if (fp_equald (maxden, 0.0D0))
call error (1, "Saturated pixel density not initialized")
call hdic_init (Memd[den], nvals, maxden)
update = hd_fit (ic, gt, Memd[den], Memd[exp], Memd[wts], Memd[errs],
nvals, save, nsave, Memc[device], interactive)
if (update == YES) {
# Record fit information in (each) database
call ic_gstr (ic, "function", Memc[fcn], SZ_FNAME)
call ic_gstr (ic, "transform", Memc[trans], SZ_FNAME)
real_fog = ic_getr (ic, "fog")
while (clgfil (db_list, Memc[dbfile], SZ_FNAME) != EOF) {
db = ddb_map (Memc[dbfile], APPEND)
call ddb_ptime (db)
# Add new fog record if it was changed interactively.
if (!fp_equalr (real_fog, ref_fog)) {
call ddb_prec (db, "fog")
call ddb_putr (db, "density", real_fog)
}
call ddb_prec (db, "cv")
call ddb_pad (db, "save", Memd[save], nsave)
call ddb_pstr (db, "function", Memc[fcn])
call ddb_pstr (db, "transformation", Memc[trans])
call ddb_unmap (db)
}
}
call ic_closed (ic)
call mfree (save, TY_DOUBLE)
call mfree (den, TY_DOUBLE)
call mfree (exp, TY_DOUBLE)
call mfree (wts , TY_DOUBLE)
call mfree (errs, TY_DOUBLE)
call gt_free (gt)
call clpcls (db_list)
call sfree (sp)
end
# HD_RLOGE -- Read log exposure, density and weights from a single dloge
# database file. Pointers to the three arrays are returned as arguments.
# The number of values accumulated is returned also; note that the value
# of nvals is changed upon return; it should not be given as a constant.
# If more than one database is being read (as in HDSHIFT applications),
# the density ABOVE fog is returned, and the reference fog values set = 0.0
# The maximum density, the density of a saturated pixel, is read from the
# first databas and returned.
procedure hd_rdloge (db_list, exp, den, wts, errs, nvals, fog, maxden, wt_type)
int db_list # File descriptor for data base file
pointer exp # Pointer to exposure array - returned
pointer den # Pointer to density array - returned
pointer wts # Pointer to weights array - returned
pointer errs # Pointer to std deviation array - returned
int nvals # Number of data pairs read - returned
double fog # Value of fog read from database - returned
double maxden # Maximum density, read from db - returned
int wt_type # Type of weighting
pointer db
bool sdevrec
int buflen, off, rec
int nden, nexp, nwts, nspots, nerrs, nfiles
char dloge[SZ_FNAME]
pointer ddb_map()
bool fp_equald()
int ddb_locate(), ddb_geti(), clgfil(), imtlen()
real ddb_getr()
errchk ddb_locate, ddb_gad, malloc, ddb_map, ddb_unmap
begin
nvals = 0
off = 0
buflen = NSPOTS
nfiles = imtlen (db_list)
maxden = 0.0D0
# Dynamically allocate memory for arrays; it can be increased later.
call malloc (exp, buflen, TY_DOUBLE)
call malloc (den, buflen, TY_DOUBLE)
call malloc (wts, buflen, TY_DOUBLE)
call malloc (errs, buflen, TY_DOUBLE)
while (clgfil (db_list, dloge, SZ_FNAME) != EOF) {
iferr (db = ddb_map (dloge, READ_ONLY)) {
call erract (EA_WARN)
next
}
# Get fog value to be subtracted from density
rec = ddb_locate (db, "fog")
fog = double (ddb_getr (db, rec, "density"))
# Get density array
rec = ddb_locate (db, "density")
nden = ddb_geti (db, rec, "den_val")
call ddb_gad (db, rec, "den_val", Memd[den+off], nden, nden)
if (nfiles > 1)
call asubkd (Memd[den+off], fog, Memd[den+off], nden)
# Get log exposure array
rec = ddb_locate (db, "exposure")
nexp = ddb_geti (db, rec, "log_exp")
call ddb_gad (db, rec, "log_exp", Memd[exp+off], nexp, nexp)
# Get saturated pixel density if not already set
if (fp_equald (maxden, 0.0D0)) {
iferr (rec = ddb_locate (db, "common")){
;
} else
maxden = double (ddb_getr (db, rec, "maxden"))
}
# Get std deviation array
sdevrec = true
iferr {
rec = ddb_locate (db, "standard deviation")
nerrs = ddb_geti (db, rec, "sdev_val")
call ddb_gad (db, rec, "sdev_val", Memd[errs+off], nerrs, nerrs)
} then {
call erract (EA_WARN)
call eprintf ("Marker type '[ve]bar' can only show weights\n")
call amovkd (0.0D0, Memd[errs+off], nden)
sdevrec = FALSE
}
if (wt_type == WT_CALC) {
if (sdevrec) {
iferr {
nspots = min (nden, nexp, nerrs)
call adivd (Memd[den+off], Memd[errs+off],
Memd[wts+off], nspots)
} then {
call erract (EA_WARN)
call eprintf ("All weights set to 1.0\n")
call amovkd (double (1.0), Memd[wts+off], nspots)
}
} else {
nspots = min (nden, nexp)
call eprintf ("No sdev record; All weights set to 1.0\n")
call amovkd (double (1.0), Memd[wts+off], nspots)
}
}
if (wt_type == WT_USER) {
# WT_USER: fill "user" weights array
iferr {
rec = ddb_locate (db, "weight")
nwts = ddb_geti (db, rec, "wts_val")
nspots = min (nden, nexp, nwts)
call ddb_gad (db, rec, "wts_val", Memd[wts+off], nwts, nwts)
} then {
# Users weights can't be found. Set weights array to 1.0's.
call erract (EA_WARN)
call eprintf ("All weights set to 1.0\n")
nspots = min (nden, nexp)
call amovkd (double (1.0), Memd[wts+off], nspots)
}
}
if (wt_type == WT_NONE) {
# WT_NONE: fill "none" weights array
nspots = min (nden, nexp)
call amovkd (double (1.0), Memd[wts+off], nspots)
}
# Increment number of counts; reallocate memory if necessary.
nvals = nvals + nspots
off = off + nspots
if (nvals > buflen) {
buflen = buflen + NSPOTS
call realloc (exp, buflen, TY_DOUBLE)
call realloc (den, buflen, TY_DOUBLE)
call realloc (wts, buflen, TY_DOUBLE)
call realloc (errs, buflen, TY_DOUBLE)
}
call ddb_unmap (db)
}
if (nfiles > 1)
fog = 0.0D0
call clprew (db_list)
end
# HD_SLOGE -- Sort the log exposure, density and weight information in order
# of increasing exposure value. The sorting is done is place. The three
# data values are assummed matched on input, that is, exposure[i] matches
# density[i] with weight[i] for all array entries.
procedure hd_sdloge (density, exposure, weights, errors, nvals)
double density[nvals] # Density array
double exposure[nvals] # Exposure array
double weights[nvals] # Weights array
double errors[nvals] # Standard deviation array
int nvals # Number of values in data arrays
int i, j
double temp
define swap {temp=$1;$1=$2;$2=temp}
begin
# Bubble sort - inefficient, but sorting is done only once on
# an expected small sample size (16 pts typically).
for (i = nvals; i > 1; i = i - 1)
for (j = 1; j < i; j = j + 1)
if (density [j] > density [j+1]) {
# Out of order; exchange values
swap (exposure[j], exposure[j+1])
swap ( density[j], density[j+1])
swap ( weights[j], weights[j+1])
swap ( errors[j], errors[j+1])
}
end
# HD_FIT -- Fit the curve to input density, exposure and weight values.
# The fit can be performed interactively or not.
int procedure hd_fit (ic,
gt, den, exp, wts, errs, nvals, save, nsave, dev, interact)
pointer ic
pointer gt # Graphics tools pointer
double den[ARB] # Density values
double exp[ARB] # Exposure values
double wts[ARB] # Weight array
double errs[ARB] # Standard deviation array
int nvals # Number of data pairs to fit
pointer save # ??
int nsave # ??
char dev[SZ_FNAME] # Interactive graphics device
int interact # Flag for interactive graphics
pointer gp, cv, sp, x, dum
pointer gopen()
int update, dcvstati()
errchk malloc, gopen
begin
if (interact == YES) {
gp = gopen (dev, NEW_FILE, STDGRAPH)
call icg_fitd (ic, gp, "cursor", gt, cv, den, exp, wts, errs, nvals)
call gclose (gp)
update = IC_UPDATE(ic)
} else {
# Do fit non-interactively
call smark (sp)
call salloc (x, nvals, TY_DOUBLE)
call salloc (dum, nvals, TY_INT)
call hdic_transform (ic, den, wts, Memd[x], wts, Memi[dum], nvals)
call ic_fitd (ic, cv, Memd[x], exp, wts, nvals, YES, YES, YES, YES)
call sfree (sp)
update = YES
}
nsave = (dcvstati (cv, CVORDER)) + 7
call malloc (save, nsave, TY_DOUBLE)
call dcvsave (cv, Memd[save])
call dcvfree (cv)
return (update)
end
|