1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
# EPHEM -- Calculate ephemeris data for the sun, return latitude and
# longitude of sub-earth point.
procedure ephem (month, day, year, hour, minute, second, image_r,
bn_degrees, cldc_degrees, verbose)
int month # time of observation
int day #
int year #
int hour #
int minute #
int second #
real image_r # image radius
real bn_degrees # solar latitude of sub-earth point (degrees)
real cldc_degrees # Carrington longitude of disk center
bool verbose # verbose flag
double radians_per_degree, pi, two_pi, st, d, dd
double ma, sin_ma, sin_two_ma, ml, e, e_squared, e_cubed
double ep, ea, r, image_r_squared, tl
double lan, bn, p, p_degrees
double sl1, sl2, cldc, cos_bn, x, cl1
double sin_three_ma, sec_bn, y
double dd_squared, dd_cubed, c, s, cl2, sln
int mac[12]
data mac/0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334/
begin
# This version ignores lunar and planetary perturbations.
radians_per_degree = .017453292519943d+0
pi = 3.1415926536d+0
two_pi = pi + pi
d = double(365 * year + (year - 1)/4 + mac[month] + day)
if (month >= 3 && mod(year, 4) == 0)
d = d + 1.d+0
st = double(second / 3600. + minute / 60. + hour)
d = d + st/24.d+0 -.5d+0
dd = d / 10000.d+0
dd_squared = dd * dd
dd_cubed = dd * dd * dd
# Mean anomaly.
ma = radians_per_degree * (358.475845d+0 + .985600267d+0 *
d - 1.12d-5 * dd_squared - 7.d-8 * dd_cubed)
ma = mod(ma, two_pi)
sin_ma = sin(ma)
sin_two_ma = sin(2.d+0 * ma)
sin_three_ma = sin(3.d+0 * ma)
# Mean longitude.
ml = radians_per_degree *
(279.696678d+0 + .9856473354d+0 * d + 2.267d-5 * dd_squared)
ml = mod(ml, two_pi)
# Ecentricity.
e = 0.01675104d+0 - 1.1444d-5 * dd - 9.4d-9 * dd_squared
e_squared = e * e
e_cubed = e_squared * e
# Obliquity.
ep = radians_per_degree * (23.452294d+0 -
3.5626d-3 * dd - 1.23d-7 * dd_squared + 1.03d-8 * dd_cubed)
# Eccentric anomaly.
ea = ma + (e - e_cubed/8.d+0) * sin_ma + e_squared * sin_two_ma/2.d+0 +
3.d+0 * e_cubed * sin_three_ma/8.d+0
# Radius vector.
r = 1.00000003d+0 * (1.d+0 - e * cos(ea))
# Image radius.
image_r = real(961.18d+0 / r)
image_r_squared = double(image_r * image_r)
# True longitude.
tl = ml + (2.d+0 * e - e_cubed/4.d+0) * sin_ma + 5.d+0 * e_squared *
sin_two_ma/4.d+0 + 13.d+0 * e_cubed * sin_three_ma/12.d+0
tl = mod(tl, two_pi)
# Longitude of ascending node of solar equator.
lan = radians_per_degree * (73.666667d+0 + 0.0139583d+0 *
(year + 50.d+0))
# Solar latitude of sub-earth point.
bn = asin(sin(tl - lan) * .12620d+0)
bn_degrees = real(bn / radians_per_degree)
if (verbose) {
call printf("B0 (degrees) = %10.5f\n")
call pargr(bn_degrees)
}
# Position angle of rotation axis.
p = atan(-cos(tl) * tan(ep)) + atan(-cos(tl - lan) * .12722d+0)
p_degrees = p/radians_per_degree
if (verbose) {
call printf("P-angle (degrees) = %10.5f\n")
call pargr(real(p_degrees))
}
# Carrington longitude of disk center.
sl1 = (d + 16800.d+0) * 360.d+0/25.38d+0
sl2 = mod(sl1, 360.d+0)
sln = 360.d+0 - sl2
sln = radians_per_degree * sln
cos_bn = cos(bn)
sec_bn = 1.d+0/cos_bn
c = +1.d+0
s = +1.d+0
x = -sec_bn * cos(tl - lan)
if (x < 0.)
c = -1.d+0
y = -sec_bn * sin(tl - lan) * .99200495d+0
if (y < 0.)
s = -1.d+0
cl1 = tan(tl - lan) * 0.99200495d+0
cl2 = atan(cl1)
if (s == 1.d+0 && c == 1.d+0)
cldc = sln + cl2
if (s == -1.d+0 && c == -1.d+0)
cldc = sln + cl2 + pi
if (s == 1.d+0 && c == -1.d+0)
cldc = sln + cl2 + pi
if (s == -1.d+0 && c == 1.d+0)
cldc = sln + cl2
if (cldc < 0.d+0)
cldc = cldc + two_pi
if (cldc > two_pi)
cldc = mod(cldc, two_pi)
cldc_degrees = real(cldc / radians_per_degree)
if (verbose) {
call printf ("L0 (degrees) = %10.5f\n")
call pargr (cldc_degrees)
}
end
|