aboutsummaryrefslogtreecommitdiff
path: root/noao/imred/vtel/syndico.x
blob: 64910679f0452a3136dac7563bbe94d38d45a0ea (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
include <mach.h>
include <imhdr.h>
include <imset.h>
include <gset.h>
include "syndico.h"
include "vt.h"

# SYNDICO -- Make Dicomed prints of synoptic images.  This program is tuned
# to make the images 18 centimeters in diameter.

procedure t_syndico()

char	image[SZ_FNAME]				# image to plot
char	logofile[SZ_FNAME]			# file containing logo
char	device[SZ_FNAME]			# plot device
int	sbthresh				# squibby brightness threshold
bool	verbose					# verbose flag
bool	plotlogo				# plotlogo flag
bool	forcetype				# force image type flag
bool	magnetic				# image type = magnetic flag

int	obsdate, wavelength, obstime
int	i, j, month, day, year, hour, minute, second, stat, bufptr
real	delta_gblock, x, y
real	excen, eycen, exsmd, eysmd, rguess
real	b0, l0
real	mapy1, mapy2, radius, scale, diskfrac
char	ltext[SZ_LINE]
char	system_id[SZ_LINE]

short	grey[16]
pointer	gp, sp, im, lf
pointer	subrasp, subras1, buff
int	trnsfrm[513]
int	lkup10830[1091]
int	gs10830[16]
real	xstart, xend, ystart, yend, yinc
real	xcenerr, ycenerr, ndc_xcerr, ndc_ycerr
real	temp_xcenter, temp_ycenter

pointer	immap(), gopen(), imgl2s()
int	imgeti(), clgeti(), open(), read()
real	imgetr()
bool	clgetb(), imaccf()
include	"trnsfrm.inc"
errchk	gopen, immap, sysid, imgs2s, imgl2s

# Grey scale points for 10830.
data (gs10830[i], i = 1, 6) /-1000,-700,-500,-400,-300,-250/
data (gs10830[i], i = 7, 10) /-200,-150,-100,-50/
data (gs10830[i], i = 11, 16) /0,10,20,40,60,90/

begin
	call smark (sp)
	call salloc (subrasp, DIM_VTFD, TY_SHORT)
	call salloc (subras1, 185*185, TY_SHORT)
	call salloc (buff, 185, TY_CHAR)

	# Get parameters from the cl.
	call clgstr ("image", image, SZ_FNAME)
	call clgstr ("logofile", logofile, SZ_FNAME)
	call clgstr ("device", device, SZ_FNAME)
	sbthresh = clgeti ("sbthresh")
	plotlogo = clgetb ("plotlogo")
	verbose = clgetb ("verbose")
	forcetype = clgetb ("forcetype")
	magnetic = clgetb ("magnetic")

	# Open the input image, open the logo image if requested.
	im = immap (image, READ_ONLY, 0)
	if (plotlogo)
	    iferr {
	        lf = open (logofile, READ_ONLY, TEXT_FILE)
	    } then {
		call eprintf ("Error opening the logo file, logo not made.\n")
		plotlogo = false
	    }

	# Get/calculate some of the housekeeping data.
	if (imaccf (im, "obs_date")) {
	    obsdate = imgeti (im, "obs_date")
	    obstime = imgeti (im, "obs_time")
	    month = obsdate/10000
	    day = obsdate/100 - 100 * (obsdate/10000)
	    year = obsdate - 100 * (obsdate/100)
	    hour = int(obstime/3600)
	    minute = int((obstime - hour * 3600)/60)
	    second = obstime - hour * 3600 - minute * 60
	} else {
	    # Use cl query parameters to get these values.
	    call eprintf ("Date and Time not found in image header.\n")
	    call eprintf ("Please enter them below.\n")
	    month = clgeti ("month")
	    day = clgeti ("day")
	    year = clgeti ("year")
	    hour = clgeti ("hour")
	    minute = clgeti ("minute")
	    second = clgeti ("second")
	}

	# Get the solar image center and radius from the image header,
	# get the solar image radius from the ephemeris routine.  If 
	# the two radii are similar, use the former one, if they are
	# %10 percent or more different, use the ephemeris radius and
	# assume the center is at (1024,1024).

	# Get ellipse parameters from image header.
	# If they are not there, warn the user that we are using ephemeris
	# values.
	if (imaccf (im, "E_XCEN")) {
	    excen =  imgetr (im, "E_XCEN")
	    eycen =  imgetr (im, "E_YCEN")
	    exsmd =  imgetr (im, "E_XSMD")
	    eysmd =  imgetr (im, "E_YSMD")

	    # Get rguess from ephem.
	    iferr (call ephem (month, day, year, hour, minute, second, rguess,
	        b0, l0, false))
	        call eprintf ("Error getting ephemeris data.\n")

	    radius = (exsmd + eysmd) / 2.0
	    if (abs(abs(radius-rguess)/rguess - 1.0) > 0.1) {
	        radius = rguess
	        excen = 1024.0
	        eycen = 1024.0
	    }

	} else {
	    call eprintf ("No ellipse parameters in image header.\n Using")
	    call eprintf (" ephemeris value for radius and setting center to")
	    call eprintf (" 1024, 1024\n")

	    # Get rguess from ephem.
	    iferr (call ephem (month, day, year, hour, minute, second, rguess,
	        b0, l0, false))
	        call eprintf ("Error getting ephemeris data.\n")

	    radius = rguess
	    excen = 1024.0
	    eycen = 1024.0
	}

	# Error in center. (units of pixels)
	xcenerr = excen - 1024.0
	ycenerr = eycen - 1024.0

	# Transform error to NDC.
	ndc_xcerr = xcenerr * (1.0/4096.0)
	ndc_ycerr = ycenerr * (1.0/4096.0)

	# Next, knowing that the image diameter must be 18 centimeters,
	# calculate the scaling factor we must use to expand the image.
	# DICO_18CM is a MAGIC number = 18 centimeters on dicomed prints
	# given the way the NOAO photo lab currently enlarges the images.
	scale = DICO_18CM / real(radius*2)

	# Open the output file.
	gp = gopen (device, NEW_FILE, STDGRAPH)

	# Put feducial(sp?) marks on plot.
	diskfrac = radius/1024.0
	temp_xcenter = DICO_XCENTER-ndc_xcerr
	temp_ycenter = DICO_YCENTER-ndc_ycerr
	call gline (gp, temp_xcenter, temp_ycenter+diskfrac*.25*scale+.01,
	    temp_xcenter, temp_ycenter+diskfrac*.25*scale+.025)
	call gline (gp, temp_xcenter, temp_ycenter-diskfrac*.25*scale-.01,
	    temp_xcenter, temp_ycenter-diskfrac*.25*scale-.025)
	
	# Draw a little compass on the plot.
	call gline (gp, .25, DICO_YCENTER+.25+.01,
	    .25, DICO_YCENTER+.25+.035)
	call gtext (gp, .25, DICO_YCENTER+.25+.037,
	    "N", "v=b;h=c;s=.50")
	call gmark (gp, .2565, DICO_YCENTER+.25+.037,
	    GM_CIRCLE, .006, .006)
	call gmark (gp, .2565, DICO_YCENTER+.25+.037,
	    GM_CIRCLE, .001, .001)
	call gline (gp, .25, DICO_YCENTER+.25+.01,
	    .28, DICO_YCENTER+.25+.01)
	call gtext (gp, .282, DICO_YCENTER+.25+.01,
	    "W", "v=c;h=l;s=.50")
	call gmark (gp, .290, DICO_YCENTER+.25+.01-.006,
	    GM_CIRCLE, .006, .006)
	call gmark (gp, .290, DICO_YCENTER+.25+.01-.006,
	    GM_CIRCLE, .001, .001)

	# Get the wavelength from the image header.  If the user wants
	# to force the wavelength, do so.  (this is used if the header
	# information about wavelength is wrong.)
	wavelength = imgeti (im, "wv_lngth")
	if (forcetype)
	    if (magnetic)
		wavelength = 8688
	    else
		wavelength = 10830

	# Write the grey scale labels onto the plot.
	delta_gblock = (IMGTR_X - IMGBL_X)/16.
	y = IMGBL_Y - .005
	do i = 1, 16 {
	    x = IMGBL_X + real(i-1) * delta_gblock + delta_gblock/2.
	    call sprintf (ltext, SZ_LINE, "%d")
	    if (wavelength == 8688)
		call pargi ((i-1)*(int((512./15.)+0.5))-256)
	    else if (wavelength == 10830)
		call pargi (gs10830(i))
	    call gtext (gp, x, y, ltext, "v=t;h=c;s=.20")
	}

	# Label on grey scale.
	call sprintf (ltext, SZ_LINE, "%s")
	if (wavelength == 8688)
	    call pargstr ("gauss")
	else if (wavelength == 10830)
	    call pargstr ("relative line strength")
        call gtext (gp, DICO_XCENTER, (IMGBL_Y-.024), ltext, "v=c;h=c;s=.5")

	# Put the title on.
	call sprintf (ltext, SZ_LINE, "%s")
	if (wavelength == 8688)
	    call pargstr ("8688 MAGNETOGRAM")
	else if (wavelength == 10830)
	    call pargstr ("10830 SPECTROHELIOGRAM")
	else
	    call pargstr (" ")
	call gtext (gp, DICO_XCENTER, .135, ltext, "v=c;h=c;s=.7")

	# If we don't have a logo to plot, write the data origin on the plot.
	if (!plotlogo) {

	    call sprintf (ltext, SZ_LINE, "%s")
	        call pargstr ("National")
	    call gtext (gp, .24, .155, ltext, "v=c;h=c;s=.7")
	    call sprintf (ltext, SZ_LINE, "%s")
	        call pargstr ("Solar")
	    call gtext (gp, .24, .135, ltext, "v=c;h=c;s=.7")
	    call sprintf (ltext, SZ_LINE, "%s")
	        call pargstr ("Observatory")
	    call gtext (gp, .24, .115, ltext, "v=c;h=c;s=.7")
	}

	# Put month/day/year on plot.
	call sprintf (ltext, SZ_LINE, "%02d/%02d/%02d")
	    call pargi (month)
	    call pargi (day)
	    call pargi (year)
	call gtext (gp, .70, .175, ltext, "v=c;h=l;s=.5")

	# Put the hour:minute:second on plot.
	call sprintf (ltext, SZ_LINE, "%02d:%02d:%02d UT")
	    call pargi (hour)
	    call pargi (minute)
	    call pargi (second)
	call gtext (gp, .70, .155, ltext, "v=c;h=l;s=.5")

	# Fill in the grey scale.
	if (wavelength == 8688) {
	    do i = 1, 16
	        grey[i] = (trnsfrm[(i-1)*(int((512./15.)+0.5))+1])
	    call gpcell (gp, grey, 16, 1, IMGBL_X, IMGBL_Y, IMGTR_X, IMGTR_Y)
	} else if (wavelength == 10830) {
	    do i = 1, 16
	        grey[i] = (lkup10830[gs10830(i)+1001])
	    call gpcell (gp, grey, 16, 1, IMGBL_X, IMGBL_Y, IMGTR_X, IMGTR_Y)
	}

	# Prepare some constants for plotting.
	xstart = temp_xcenter - .25 * scale
	xend = temp_xcenter + .25 * scale
	ystart = temp_ycenter - .25 * scale
	yend = temp_ycenter + .5 * scale
	mapy1 = ystart
	mapy2 = ystart
	yinc = (.5*scale)/real(DIM_VTFD)
	
	# Put the data on the plot. Line by line.
	do i = 1, DIM_VTFD {

	    if (verbose) {
		call printf ("line = %d\n")
		    call pargi (i)
		call flush (STDOUT)
	    }
	
	    subrasp = imgl2s (im, i)

	    # Call the limb trimmer and data divider.
	    call fixline (Mems[subrasp], DIM_VTFD, wavelength, sbthresh)

	    # Update the top and bottom edges of this line.
	    mapy1 = mapy2
	    mapy2 = mapy2 + yinc

	    # Put the line on the output plot.
	    call gpcell (gp, Mems[subrasp], DIM_VTFD, 1, xstart,
		mapy1, xend, mapy2)

	} # End of do loop on image lines.

	# Put the system identification on the plot.
	call sysid (system_id, SZ_LINE)
	call gtext (gp, DICO_XCENTER, .076, system_id, "h=c;s=0.45")

	# Put the NSO logo on the plot.
	if (plotlogo) {

	    # Read in the image. (the image is encoded in a text file)
	    do i = 1, 185 {
	        bufptr = 0
	        while (bufptr < 185-79) {
	            stat = read (lf, Memc[buff+bufptr], 80)
		    bufptr = bufptr + 79
	        }
	        stat = read (lf, Memc[buff+bufptr], 80)
	        do j = 1, 185 {
		    Mems[subras1+(i-1)*185+j-1] =
			short((Memc[buff+j-1]-32.)*2.7027027)
		}
	    }

	    # Put it on the plot.
	    call gpcell (gp, Mems[subras1], 185, 185, .24, .13, .32, .21)
	}

	# Close the graphics pointer, unmap images, free stack.
	call gclose (gp)
	call imunmap (im)
	if (plotlogo)
	    call close (lf)
	call sfree (sp)
end


# FIXLINE -- Clean up the line.  Set the value of pixels off the limb to
# zero, remove the squibby brightness from each pixel, and apply a
# nonlinear lookup table to the greyscale mapping.

procedure fixline (ln, xlength, wavelength, sbthresh)

int	xlength			# length of line buffer
short	ln[xlength]		# line buffer
int	wavelength		# wavelength of the observation
int	sbthresh		# squibby brightness threshold

int	trnsfrm[513]
int	lkup10830[1091]
bool	found
int	i, left, right
include	"trnsfrm.inc"

begin
	# Look in from the left end till squibby brightness goes above the
	# threshold, remember where this limbpoint is.
	found = false
	do i = 1, xlength {		# Find left limbpoint.
	    if (and(int(ln[i]),17B) > sbthresh) {
		found = true
		left = i
		break
	    }
	}

	if (found) {
	    # Find the right limbpoint.
	    do i = xlength, 1, -1 {
	        if (and(int(ln[i]),17B) > sbthresh) {
		    right = i
		    break
	        }
	    }

	    # Divide the image by 16, map the greyscale, and trim the limb.
	    do i = left+1, right-1 {

		# Remove squibby brightness.
		ln[i] = ln[i]/16

		if (wavelength == 8688) {
		    # Magnetogram, nonlinear greyscale.
		    # Make data fit in the table.
		    if (ln[i] < -256)
		        ln[i] = -256
		    if (ln[i] > 256)
		        ln[i] = 256

		    # Look it up in the table.
		    ln[i] = trnsfrm[ln[i]+257]
		} else if (wavelength == 10830) {
		    # 10830 spectroheliogram, nonlinear greyscale.
		    # Make data fit in the table.
		    if (ln[i] < -1000)
		        ln[i] = -1000
		    if (ln[i] > 90)
		        ln[i] = 90
		    # Look it up in the table.
		    ln[i] = lkup10830[ln[i]+1001]
		} else {
		    # Unknown type, linear greyscale.
		    if (ln[i] < 1)
		        ln[i] = 1
		    if (ln[i] > 255)
		        ln[i] = 255
		}
	    }

	    # Set stuff outside the limb to zero.
	    do i = 1, left
		ln[i] = 0
	    do i = right, xlength
		ln[i] = 0
	} else {
	    # This line is off the limb, set it to zero.
	    do i = 1, xlength
		ln[i] = 0
        }
end