1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
|
include <error.h>
include <ctype.h>
include <imhdr.h>
include <imset.h>
include <mach.h>
include "skyblock.h"
# SKY_BLOCK - Determine sky and sky sigma in blocks.
#
# This is layered on MAPIO and CONVOLVE.
procedure sky_block (skb, dosky, dosig, in, bpm, expmap, skyname, signame,
skymap, sigmap, logfd)
pointer skb #U Sky block structure
bool dosky #I Compute sky
bool dosig #I Compute sigma
pointer in #I Input image pointer
pointer bpm #I Input mask
pointer expmap #I Exposure map
char skyname[ARB] #I Sky map name (if none then no output)
char signame[ARB] #I Sigma map name (if none then no output)
pointer skymap #U Sky map
pointer sigmap #U Sigma map
int logfd #I Verbose?
int l, blkstep, nc, nl
real cnvwt
pointer sp, cnv, cnvdata, bp
pointer im[2], indata, skydata, sigdata, expdata
errchk skb_pars, skb_iminit, convolve, skb_accum, skb_update
begin
if (!(dosky||dosig))
return
call smark (sp)
# Log operation.
if (logfd != NULL) {
if (dosky && dosig)
call fprintf (logfd,
" Determine sky and sigma by block statistics:\n")
else if (dosky)
call fprintf (logfd, " Determine sky by block statistics:\n")
else
call fprintf (logfd,
" Determine sigma by block statistics:\n")
}
# Set parameters if not set in a previous call or set externally.
if (skb == NULL)
call skb_pars ("open", "", skb)
# Set parameters for the image.
blkstep = SKB_BLKSTEP(skb)
call skb_iminit (skb, in, expmap, blkstep, logfd)
# Set maximum number of image columns and lines to use.
nc = SKB_NCSBLK(skb) * SKB_NCSPIX(skb)
nl = SKB_NLSBLK(skb) * SKB_NLSPIX(skb)
# Set up convolution. Note we can't use convolution with a blkstep.
cnv = SKB_CNV(skb)
if (Memc[cnv] != EOS) {
if (blkstep > 1) {
call salloc (cnv, 1, TY_CHAR)
Memc[cnv] = EOS
} else
call salloc (cnvdata, nc, TY_REAL)
}
# Setup bad pixel mask.
if (bpm == NULL) {
call salloc (bp, nc, TY_INT)
call aclri (Memi[bp], nc)
}
# Go through image creating low resolution sky blocks.
im[1] = in; im[2] = NULL
do l = 1, nl, blkstep {
call convolve (im, bpm, skymap, sigmap, expmap, 0,
1., l, Memc[cnv], indata, bp, cnvdata, skydata,
sigdata, expdata, cnvwt, logfd)
call skb_accum (skb, l, blkstep, Memr[cnvdata], Memr[skydata],
Memr[sigdata], Memr[expdata], Memi[bp], nc, cnvwt)
}
# Free convolution memory.
call convolve (im, bpm, skymap, sigmap, expmap, 0,
1., 0, Memc[cnv], indata, bp, cnvdata, skydata,
sigdata, expdata, cnvwt, logfd)
# Turn the sky blocks into sky maps.
call skb_update (skb, dosky, dosig, in, skyname, signame,
skymap, sigmap, logfd)
# Free memory.
call skb_imfree (skb)
call sfree (sp)
end
# SKB_IMINIT -- Initialize parameters and allocate memory for an image.
procedure skb_iminit (skb, im, expmap, blkstep, logfd)
pointer skb #U Sky block structure
pointer im #I Image pointer
pointer expmap #I Exposure map pointer
int blkstep #U Line step for speed
int logfd #I Log file descriptor
int nc, nl
begin
# Number of pixels per subblock.
nc = IM_LEN(im,1)
nl = IM_LEN(im,2)
if (SKB_BLKSIZE(skb) < 0) {
if (nc < nl) {
SKB_NCSPIX(skb) = max (SKB_NMINPIX(skb),
nc / (SKB_NSUBBLKS(skb) * max(1,-SKB_BLKSIZE(skb))))
SKB_NLSPIX(skb) = SKB_NCSPIX(skb)
} else {
SKB_NLSPIX(skb) = max (SKB_NMINPIX(skb),
nl / (SKB_NSUBBLKS(skb) * max(1,-SKB_BLKSIZE(skb))))
SKB_NCSPIX(skb) = SKB_NLSPIX(skb)
}
} else {
SKB_NCSPIX(skb) = max (SKB_NMINPIX(skb),
min (nc, SKB_BLKSIZE(skb)) / SKB_NSUBBLKS(skb))
SKB_NLSPIX(skb) = max (SKB_NMINPIX(skb),
min (nl, SKB_BLKSIZE(skb)) / SKB_NSUBBLKS(skb))
}
# Number of subblocks, blocks, and number of pixels per block.
SKB_NCSBLK(skb) = max (1, nc / SKB_NCSPIX(skb))
SKB_NLSBLK(skb) = max (1, nl / SKB_NLSPIX(skb))
SKB_NCBLK(skb) = (SKB_NCSBLK(skb)+SKB_NSUBBLKS(skb)-1)/SKB_NSUBBLKS(skb)
SKB_NLBLK(skb) = (SKB_NLSBLK(skb)+SKB_NSUBBLKS(skb)-1)/SKB_NSUBBLKS(skb)
SKB_NCPIX(skb) = SKB_NCSPIX(skb) * SKB_NSUBBLKS(skb)
SKB_NLPIX(skb) = SKB_NLSPIX(skb) * SKB_NSUBBLKS(skb)
# Each subblock must have at least SKYMIN or FRAC sky pixels.
SKB_NSKYMIN(skb) = min (SKB_SKYMIN(skb),
nint (SKB_FRAC(skb) * SKB_NCSPIX(skb) * SKB_NLSPIX(skb)))
# Histogram parameters.
SKB_NAV(skb) = nint (real(SKB_NBINS(skb)) / (min (SKB_NBINS(skb),
SKB_NCSPIX(skb) * SKB_NLSPIX(skb) / SKB_NMINBINS(skb))))
SKB_NAV(skb) = SKB_NAV(skb) + mod (SKB_NAV(skb)+1, 2)
#SKB_NAV(skb) = 1
# Set line subsampling for speed.
if (blkstep > 1) {
blkstep = min (1 + SKB_NLSPIX(skb) / 30, blkstep)
SKB_NSKYMIN(skb) = SKB_NSKYMIN(skb) / blkstep
}
# Allocate and initialize memory.
call calloc (SKB_BINS(skb), SKB_NBINS(skb)*(SKB_NCSBLK(skb)+1), TY_INT)
call calloc (SKB_NSKY(skb), SKB_NCSBLK(skb), TY_INT)
call calloc (SKB_SKYS(skb), SKB_NCSBLK(skb)*SKB_NLSBLK(skb), TY_REAL)
call calloc (SKB_SIGS(skb), SKB_NCSBLK(skb)*SKB_NLSBLK(skb), TY_REAL)
if (expmap == NULL) {
call malloc (SKB_EXP(skb), 1, TY_REAL)
Memr[SKB_EXP(skb)] = INDEFR
} else
call calloc (SKB_EXP(skb), SKB_NCSBLK(skb), TY_REAL)
# Set pointers to first line of blocks.
SKB_SKY(skb) = SKB_SKYS(skb)
SKB_SIG(skb) = SKB_SIGS(skb)
if (logfd != NULL) {
call fprintf (logfd, " Number of blocks: %d %d\n")
call pargi (SKB_NCBLK(skb))
call pargi (SKB_NLBLK(skb))
call fprintf (logfd, " Number of pixels per block: %d %d\n")
call pargi (SKB_NCPIX(skb))
call pargi (SKB_NLPIX(skb))
call fprintf (logfd, " Number of subblocks: %d %d\n")
call pargi (SKB_NCSBLK(skb))
call pargi (SKB_NLSBLK(skb))
call fprintf (logfd, " Number of pixels per subblock: %d %d\n")
call pargi (SKB_NCSPIX(skb))
call pargi (SKB_NLSPIX(skb))
if (blkstep > 1) {
call fprintf (logfd, " Line sampling step: %d\n")
call pargi (blkstep)
}
}
end
# SKB_IMFREE -- Free memory for an image.
procedure skb_imfree (skb)
pointer skb #I Sky block structure
begin
call mfree (SKB_BINS(skb), TY_INT)
call mfree (SKB_NSKY(skb), TY_INT)
call mfree (SKB_SKYS(skb), TY_REAL)
call mfree (SKB_SIGS(skb), TY_REAL)
call mfree (SKB_EXP(skb), TY_REAL)
end
# SKB_ACCUM -- Accumulate sky pixels in block histograms.
# Evaluate histograms when a block is complete.
procedure skb_accum (skb, line, blkstep, cnv, sky, sig, exp, bp, nc, cnvwt)
pointer skb #I Sky block structure
int line #I Line
int blkstep #I Line step
real cnv[nc] #I Convolved image data
real sky[nc] #I Sky data
real sig[nc] #I Sky sigma data
real exp[nc] #I Exposure data
int bp[nc] #I Bad pixel values
int nc #I Number of columns
real cnvwt #I Sigma weight
real a, b, s, t, rcnv, tcnv
int c, n, ncmax, nbins, bin, csky
pointer bins, skys, sigs, exps, nsky
begin
if (line > SKB_NLSBLK(skb) * SKB_NLSPIX(skb))
return
ncmax = min (nc, SKB_NCSBLK(skb) * SKB_NCSPIX(skb))
a = SKB_A(skb)
b = SKB_B(skb)
n = SKB_NCSPIX(skb)
nbins = SKB_NBINS(skb)
bins = SKB_BINS(skb)
skys = SKB_SKY(skb)
sigs = SKB_SIG(skb)
exps = SKB_EXP(skb)
nsky = SKB_NSKY(skb)
if (IS_INDEFR(Memr[exps])) {
do c = 1, ncmax {
if (bp[c] != 0)
next
s = sky[c]
t = sig[c]
rcnv = cnv[c] - s
tcnv = t / cnvwt
bin = a * rcnv / tcnv + b
if (bin < 1 || bin > nbins)
next
csky = (c-1) / n
bin = bins + csky * nbins + bin - 1
Memi[bin] = Memi[bin] + 1
Memr[skys+csky] = Memr[skys+csky] + s
Memr[sigs+csky] = Memr[sigs+csky] + t
Memi[nsky+csky] = Memi[nsky+csky] + 1
}
} else {
do c = 1, ncmax {
if (bp[c] != 0)
next
s = sky[c]
t = sig[c]
rcnv = cnv[c] - s
tcnv = t / cnvwt
bin = a * rcnv / tcnv + b
if (bin < 1 || bin > nbins)
next
csky = (c-1) / n
bin = bins + csky * nbins + bin - 1
Memi[bin] = Memi[bin] + 1
Memr[skys+csky] = Memr[skys+csky] + s
Memr[sigs+csky] = Memr[sigs+csky] + t
Memr[exps+csky] = Memr[exps+csky] + exp[c]
Memi[nsky+csky] = Memi[nsky+csky] + 1
}
}
# Evaluate histogram sky values if all lines have been accumulated.
n = mod (line, SKB_NLSPIX(skb))
if (n == 0 || n + blkstep > SKB_NLSPIX(skb)) {
n = SKB_NCSBLK(skb)
call skb_blkeval (Memi[bins], nbins, a, b, Memr[skys], Memr[sigs],
Memr[exps], Memi[nsky], n, SKB_NSKYMIN(skb), SKB_NAV(skb),
SKB_HISTWT(skb), SKB_SIGFAC(skb))
# Initialize for accumulation of next line of blocks.
SKB_SKY(skb) = skys + n
SKB_SIG(skb) = sigs + n
if (!IS_INDEFR(Memr[exps]))
call aclrr (Memr[exps], n)
call aclri (Memi[nsky], n)
call aclri (Memi[bins], n*nbins)
}
end
# SKB_BLKEVAL -- Evaluate sky and sigma for each histogram in line of blocks.
# Set to INDEF if there are not enough pixels in the histogram.
procedure skb_blkeval (bins, nbins, a, b, skys, sigs, exps, nsky, ncsblk,
nskymin, nav, histwt, sigfac)
int bins[nbins,ncsblk] #I Sky subblock bins
int nbins #I Number of bins
real a, b #I Binning coefficients
real skys[ncsblk] #U Sky sum in, sky estimate out
real sigs[ncsblk] #U Sigma sum in, sigma estimate out
real exps[ncsblk] #I Exposure sum
int nsky[ncsblk] #I Number of values in bin
int ncsblk #I Number of sky pixels per subblock
int nskymin #I Minimum number of sky pixels for good sky
int nav #I Number of bins to average
int histwt #I Histogram weighting power
real sigfac #I Sigma conversion factor from mean abs dev.
int i, j, k, l, m, n
double sky, sig, exp, x, wt, skymean, skymed, skybin, sigbin
double sum1, sum2, sum3
begin
# do i = 1, ncsblk {
# do j = 1, nbins {
# call printf ("%d\n")
# call pargi (bins[j,i])
# }
# }
m = nav / 2
do i = 1, ncsblk {
n = nsky[i]
if (n < nskymin) {
skys[i] = INDEFR
sigs[i] = INDEFR
next
}
sky = skys[i] / n
sig = sigs[i] / n
if (!IS_INDEFR(exps[1])) {
exp = exps[i] / n
exps[i] = exp
} else
exp = 1
# Compute mean and median using a power weighting of the histogram.
sum1 = 0.
sum2 = 0.
sum3 = 0.
k = ncsblk + 1
call aclri (bins[1,k], nbins)
do j = 1, nbins {
n = bins[j,i]
do l = max(1,j-m), min (nbins,j+m)
bins[l,k] = bins[l,k] + n
}
n = nsky[i]
switch (histwt) {
case 1:
do j = 1, nbins {
wt = real (bins[j,k]) / n
x = j
sum1 = sum1 + wt * x
sum2 = sum2 + wt
}
sum2 = sum2
x = 0
do j = 1, nbins {
wt = real (bins[j,k]) / n
sum3 = sum3 + wt + x
if (sum3 >= sum2)
break
x = wt
}
case 2:
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt * wt
x = j
sum1 = sum1 + wt * x
sum2 = sum2 + wt
}
sum2 = sum2
x = 0
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt * wt
sum3 = sum3 + wt + x
if (sum3 >= sum2)
break
x = wt
}
case 3:
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt * wt * wt
x = j
sum1 = sum1 + wt * x
sum2 = sum2 + wt
}
sum2 = sum2
x = 0
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt * wt * wt
sum3 = sum3 + wt + x
if (sum3 >= sum2)
break
x = wt
}
case 4:
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt * wt
wt = wt * wt
x = j
sum1 = sum1 + wt * x
sum2 = sum2 + wt
}
sum2 = sum2
x = 0
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt * wt
wt = wt * wt
sum3 = sum3 + wt + x
if (sum3 >= sum2)
break
x = wt
}
default:
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt ** histwt
x = j
sum1 = sum1 + wt * x
sum2 = sum2 + wt
}
sum2 = sum2
x = 0
do j = 1, nbins {
wt = real (bins[j,k]) / n
wt = wt ** histwt
sum3 = sum3 + wt + x
if (sum3 >= sum2)
break
x = wt
}
}
skymean = sum1 / sum2
skymed = j - (sum3 - sum2) / (wt + x)
#skybin = skymean - max (0D0, 3 * (skymean - skymed))
skybin = skymean - 3 * (skymean - skymed)
#skybin = skymean
skys[i] = ((skybin + 0.5 - b) / a) * sig + sky
sum1 = 0.
sum2 = 0.
do j = 1, nbins {
wt = bins[j,k]
x = abs (j - skybin)
sum1 = sum1 + wt * x
sum2 = sum2 + wt
}
sigbin = sum1 / sum2
sigs[i] = sigbin / a * sig * sqrt (exp) * sigfac
}
end
# SKB_UPDATE -- Update the sky and sigma maps using the block values.
procedure skb_update (skb, dosky, dosig, im, skyname, signame,
skymap, sigmap, logfd)
pointer skb #I Sky block structure
bool dosky #I Compute sky
bool dosig #I Compute sigma
pointer im #I Image pointer
char skyname[ARB] #I Output sky map name
char signame[ARB] #I Output sigma map name
pointer skymap #U Sky map pointer
pointer sigmap #U Sigma map pointer
int logfd #I Log file descriptor
bool skydebug, sigdebug
pointer sp, fname, tmp, map_open()
errchk skb_wmap, skb_grow, skb_merge, skb_wmap, map_close, map_open
begin
call smark (sp)
call salloc (fname, SZ_FNAME, TY_CHAR)
if (dosky) {
skydebug = false
if (skydebug)
call skb_wmap ("skydebug.fits", im, SKB_SKYS(skb),
SKB_NCSBLK(skb), SKB_NLSBLK(skb), SKB_NCSPIX(skb),
SKB_NLSPIX(skb), 0., NULL)
# Grow subblocks contaminated by large objects.
call skb_grow (SKB_SKYS(skb), SKB_NCSBLK(skb), SKB_NLSBLK(skb),
SKB_GROW(skb))
if (skydebug)
call skb_wmap ("skydebug.fits", im, SKB_SKYS(skb),
SKB_NCSBLK(skb), SKB_NLSBLK(skb), SKB_NCSPIX(skb),
SKB_NLSPIX(skb), 0., NULL)
# Merge sky from subblocks and interpolate missing regions.
call skb_merge (Memr[SKB_SKYS(skb)], SKB_NCSBLK(skb),
SKB_NLSBLK(skb), Memr[SKB_SKYS(skb)], SKB_NCBLK(skb),
SKB_NLBLK(skb))
# Write block maps and map them with the MAPIO interface.
# If no name is given then use a temporary image.
if (skyname[1] == EOS) {
call mktemp ("tmpsky", Memc[fname], SZ_FNAME)
call skb_wmap (Memc[fname], im, SKB_SKYS(skb),
SKB_NCBLK(skb), SKB_NLBLK(skb), SKB_NCPIX(skb),
SKB_NLPIX(skb), INDEFR, NULL)
} else {
call strcpy (skyname, Memc[fname], SZ_FNAME)
call skb_wmap (Memc[fname], im, SKB_SKYS(skb),
SKB_NCBLK(skb), SKB_NLBLK(skb), SKB_NCPIX(skb),
SKB_NLPIX(skb), INDEFR, logfd)
}
tmp = skymap
iferr (skymap = map_open (Memc[fname], im))
skymap = NULL
if (skymap == NULL) {
skymap = tmp
call error (1, "Could not update sky")
}
call map_close (tmp)
if (skyname[1] == EOS)
call map_seti (skymap, "delete", YES)
}
if (dosig) {
sigdebug = false
if (sigdebug)
call skb_wmap ("sigdebug.fits", im, SKB_SIGS(skb),
SKB_NCSBLK(skb), SKB_NLSBLK(skb), SKB_NCSPIX(skb),
SKB_NLSPIX(skb), 0., NULL)
# Grow subblocks contaminated by large objects.
call skb_grow (SKB_SIGS(skb), SKB_NCSBLK(skb), SKB_NLSBLK(skb),
SKB_GROW(skb))
if (sigdebug)
call skb_wmap ("sigdebug.fits", im, SKB_SIGS(skb),
SKB_NCSBLK(skb), SKB_NLSBLK(skb), SKB_NCSPIX(skb),
SKB_NLSPIX(skb), 0., NULL)
# Merge sky sigma from subblocks and interpolate missing regions.
call skb_merge (Memr[SKB_SIGS(skb)], SKB_NCSBLK(skb),
SKB_NLSBLK(skb), Memr[SKB_SIGS(skb)], SKB_NCBLK(skb),
SKB_NLBLK(skb))
# Write block maps and map them with the MAPIO interface.
# If no name is given then use a temporary image.
if (signame[1] == EOS) {
call mktemp ("tmpsig", Memc[fname], SZ_FNAME)
call skb_wmap (Memc[fname], im, SKB_SIGS(skb),
SKB_NCBLK(skb), SKB_NLBLK(skb), SKB_NCPIX(skb),
SKB_NLPIX(skb), INDEFR, NULL)
} else {
call strcpy (signame, Memc[fname], SZ_FNAME)
call skb_wmap (Memc[fname], im, SKB_SIGS(skb),
SKB_NCBLK(skb), SKB_NLBLK(skb), SKB_NCPIX(skb),
SKB_NLPIX(skb), INDEFR, logfd)
}
tmp = sigmap
iferr (sigmap = map_open (Memc[fname], im))
sigmap = NULL
if (sigmap == NULL) {
sigmap = tmp
call error (1, "Could not update sky sigma")
}
call map_close (tmp)
if (signame[1] == EOS)
call map_seti (sigmap, "delete", YES)
}
call sfree (sp)
end
# SKB_GROW -- Grow around subblocks with insufficient data.
procedure skb_grow (sky, nc, nl, grow)
pointer sky # Pointer to real sky array to be grown
int nc, nl # Size of sky array
real grow # Grow radius
int i, j, k, l1, l2, ngrow, nbufs
real grow2, val1, val2, y2
pointer buf, buf1, buf2, ptr
errchk calloc
begin
# Initialize.
ngrow = int (grow)
grow2 = grow * grow
nbufs = min (1 + 2 * ngrow, nl)
call calloc (buf, nc*nbufs, TY_REAL)
l1 = 1; l2 = 1
while (l1 <= nl) {
buf1 = sky + (l1 - 1) * nc
buf2 = buf + mod (l1, nbufs) * nc
do i = 1, nc {
val1 = Memr[buf1]
val2 = Memr[buf2]
if (IS_INDEFR(val1)) {
do j = max(1,l1-ngrow), min (nl,l1+ngrow) {
ptr = buf + mod (j, nbufs) * nc - 1
y2 = (j - l1) ** 2
do k = max(1,i-ngrow), min (nc,i+ngrow) {
if ((k-i)**2 + y2 > grow2)
next
Memr[ptr+k] = INDEFR
}
}
} else if (!IS_INDEFR(val2))
Memr[buf2] = val1
buf1 = buf1 + 1
buf2 = buf2 + 1
}
if (l1 > ngrow) {
while (l2 <= nl) {
buf1 = sky + (l2 - 1) * nc
buf2 = buf + mod (l2, nbufs) * nc
do i = 1, nc {
Memr[buf1] = Memr[buf2]
Memr[buf2] = 0
buf1 = buf1 + 1
buf2 = buf2 + 1
}
l2 = l2 + 1
if (l1 != nl)
break
}
}
l1 = l1 + 1
}
call mfree (buf, TY_REAL)
end
# SKB_MERGE -- Merge subblock into blocks.
# Use average of subblocks with minimum and maximum excluded.
procedure skb_merge (in, ncin, nlin, out, ncout, nlout)
real in[ncin,nlin]
int ncin, nlin
real out[ncout,nlout]
int ncout, nlout
int ncs, nls
int i, i1, i2, iout, j, j1, j2, jout, n, nindef
real val, sum, minval, maxval
pointer work
begin
# Number of input subblocks per output block.
ncs = nint (real (ncin) / ncout)
nls = nint (real (nlin) / nlout)
nindef = 0
j2 = 0; jout = 0
do j1 = 1, nlin, nls {
jout = jout + 1
j2 = min (nlin, j2 + nls)
i2 = 0; iout = 0
do i1 = 1, ncin, ncs {
iout = iout + 1
i2 = min (ncin, i2 + ncs)
n = 0
sum = 0.
minval = MAX_REAL
maxval = -MAX_REAL
do j = j1, j2 {
do i = i1, i2 {
if (IS_INDEFR(in[i,j]))
next
val = in[i,j]
sum = sum + val
minval = min (val, minval)
maxval = max (val, maxval)
n = n + 1
}
}
if (n > 2)
out[iout,jout] = (sum - minval - maxval) / (n - 2)
else if (n >= min (ncs, nls))
out[iout,jout] = sum / n
else {
out[iout,jout] = INDEFR
nindef = nindef + 1
}
}
}
# Interpolate to fill in blocks with no sky data.
if (nindef > 0) {
call malloc (work, ncout*nlout, TY_REAL)
call interp2 (out, Memr[work], ncout, nlout)
call amovr (Memr[work], out, ncout*nlout)
call mfree (work, TY_REAL)
}
end
## SKB_ESTIMATE -- Estimate of sky in block from subblocks.
## Use order selection.
#
#procedure skb_merge (in, ncin, nlin, out, ncout, nlout, select)
#
#real in[ncin,nlin]
#int ncin, nlin
#real out[ncout,nlout]
#int ncout, nlout
#real select # Selection fraction
#
#int ncs, nls
#int i, i1, i2, iout, j, j1, j2, jout, n, nindef, nselect
#pointer sp, work, ptr
#real asokr()
#
#begin
# # Number of input subblocks per output block.
# ncs = nint (real (ncin) / ncout)
# nls = nint (real (nlin) / nlout)
#
# call smark (sp)
# call salloc (work, ncs*nls, TY_REAL)
#
# nindef = 0
# j2 = 0; jout = 0
# do j1 = 1, nlin, nls {
# jout = jout + 1
# j2 = min (nlin, j2 + nls)
# i2 = 0; iout = 0
# do i1 = 1, ncin, ncs {
# iout = iout + 1
# i2 = min (ncin, i2 + ncs)
# ptr = work
# do j = j1, j2 {
# do i = i1, i2 {
# if (IS_INDEFR(in[i,j]))
# next
# Memr[ptr] = in[i,j]
# ptr = ptr + 1
# }
# }
# n = ptr - work
# if (n >= min (ncs, nls)) {
# nselect = nint (select * (n - 1)) + 1
# out[iout,jout] = asokr (Memr[work], n, nselect)
# } else {
# out[iout,jout] = INDEFR
# nindef = nindef + 1
# }
# }
# }
#
# # Interpolate to fill in blocks with no sky data.
# if (nindef > 0) {
# call salloc (work, ncout*nlout, TY_REAL)
# call interp2 (out, Memr[work], ncout, nlout)
# call amovr (Memr[work], out, ncout*nlout)
# }
#
# call sfree (sp)
#end
# SKB_WMAP -- Write map from block data.
procedure skb_wmap (name, imref, data, ncblk, nlblk, ncpix, nlpix, blank, logfd)
char name[ARB] #I Output name
pointer imref #I Reference image pointer
pointer data #I Block image data
int ncblk, nlblk #I Block image dimensions
int ncpix, nlpix #I Number of reference image pixels per block
real blank #I Blank value
int logfd #I Log file descriptor
bool strne()
int i, j, imaccess(), strlen(), stridxs()
real a[2]
pointer sp, title, str
pointer im, mw, buf, immap(), impl2r(), mw_openim()
errchk immap, imrename
begin
call smark (sp)
call salloc (title, SZ_IMTITLE, TY_CHAR)
call salloc (str, SZ_FNAME, TY_CHAR)
# Create title for new image or to check for updating.
call sprintf (Memc[title], SZ_IMTITLE, "Sky for ")
i = strlen (Memc[title])
call imstats (imref, IM_IMAGENAME, Memc[title+i], SZ_IMTITLE-i)
iferr {
im = NULL; mw = NULL
# # Check for existing image and rename.
# if (imaccess (name, 0) == YES) {
# j = strlen (name)
# call malloc (fname, j+SZ_FNAME, TY_CHAR)
# i = strldxs (".", name) - 1
# if (i < 0)
# i = j
# do j = 1, ARB {
# call strcpy (name, Memc[fname], i)
# call sprintf (Memc[fname+i], SZ_FNAME, "%d%s")
# call pargi (j)
# call pargstr (name[i+1])
# if (imaccess (Memc[fname], 0) == YES)
# next
# call imrename (name, Memc[fname])
# break
# }
# call mfree (fname, TY_CHAR)
# }
if (imaccess (name, 0) == NO) {
if (logfd != NULL) {
call strcpy (name, Memc[str], SZ_FNAME)
i = stridxs (",", Memc[str])
if (i > 0) {
Memc[str+i-1] = ']'
Memc[str+i] = EOS
}
call fprintf (logfd, " Write sky map: %s\n")
call pargstr (Memc[str])
}
buf = immap (name, NEW_COPY, imref); im = buf
IM_PIXTYPE(im) = TY_REAL
IM_LEN(im,1) = ncblk
IM_LEN(im,2) = nlblk
call strcpy (Memc[title], IM_TITLE(im), SZ_IMTITLE)
iferr (call imdelf (im, "BPM"))
;
iferr (call imdelf (im, "DATASEC"))
;
iferr (call imdelf (im, "TRIMSEC"))
;
do i = 1, nlblk {
buf = impl2r(im,i)
call amovr (Memr[data+(i-1)*ncblk], Memr[buf], ncblk)
if (!IS_INDEFR(blank)) {
do j = 1, ncblk
if (IS_INDEFR(Memr[buf+j-1]))
Memr[buf+j-1] = blank
}
}
# Update the WCS.
mw = mw_openim (imref)
a[1] = 1. / ncpix
a[2] = 1. / nlpix
call mw_scale (mw, a, 3)
a[1] = 0.5
a[2] = 0.5
call mw_shift (mw, a, 3)
call mw_saveim (mw, im)
} else {
if (logfd != NULL) {
call strcpy (name, Memc[str], SZ_FNAME)
i = stridxs (",", Memc[str])
if (i > 0) {
Memc[str+i-1] = ']'
Memc[str+i] = EOS
}
call fprintf (logfd, " Update sky map: %s\n")
call pargstr (Memc[str])
}
buf = immap (name, READ_WRITE, 0); im = buf
if (strne (IM_TITLE(im), Memc[title]) ||
IM_LEN(im,1) != ncblk || IM_LEN(im,2) != nlblk)
call error (1, "Cannot update sky map")
do i = 1, nlblk {
buf = impl2r(im,i)
call amovr (Memr[data+(i-1)*ncblk], Memr[buf], ncblk)
if (!IS_INDEFR(blank)) {
do j = 1, ncblk
if (IS_INDEFR(Memr[buf+j-1]))
Memr[buf+j-1] = blank
}
}
}
} then
call erract (EA_WARN)
if (mw != NULL)
call mw_close (mw)
if (im != NULL)
call imunmap (im)
call sfree (sp)
end
# INTERP2 -- Interpolate 2D array by averaging 1D interpolations along lines
# and columns. It is an error if there is no data to interpolate.
procedure interp2 (in, out, nc, nl)
real in[nc,nl] # Input data
real out[nc,nl] # Output data (not the same as input)
int nc, nl # Size of data
int i, j, k1, k2, nerr
pointer sp, flags, buf
begin
call smark (sp)
call salloc (flags, nl, TY_INT)
call salloc (buf, nl, TY_REAL)
call amovki (OK, Memi[flags], nl)
# Interpolate along lines. Flag lines with no data.
nerr = 0
do i = 1, nl
iferr (call interp1 (in[1,i], out[1,i], nc)) {
Memi[flags+i-1] = ERR
nerr = nerr + 1
}
if (nerr == nl)
call error (1, "No data to interpolate")
# Interpolate along columns. Check for columns and lines with no data.
do j = 1, nc {
do i = 1, nl
Memr[buf+i-1] = in[j,i]
ifnoerr (call interp1 (Memr[buf], Memr[buf], nl)) {
do i = 1, nl {
if (Memi[flags+i-1] == OK)
out[j,i] = (out[j,i] + Memr[buf+i-1]) / 2.
else
out[j,i] = Memr[buf+i-1]
}
} else {
do i = 1, nl {
if (Memi[flags+i-1] == ERR) {
# Find nearest line with good data.
do k1 = i-1, 1, -1
if (Memi[flags+k1-1] == OK)
break
do k2 = i+1, nl
if (Memi[flags+k2-1] == OK)
break
if (k1 >= 1 & k2 <= nl) {
if (i - k1 < k2 - i)
out[j,i] = out[j,k1]
else
out[j,i] = out[j,k2]
} else if (k1 >= 1)
out[j,i] = out[j,k1]
else if (k2 <= nl)
out[j,i] = out[j,k2]
}
}
}
}
call sfree (sp)
end
# INTERP1 -- Interpolate 1D vectors.
# An error is generated if there is no data to interpolate.
procedure interp1 (in, out, npts)
real in[npts] # Input line
real out[npts] # Output line (may be the same as input)
int npts # Number of points in line
int i, i1, i2, j
real v, v1, dv
begin
i1 = 0
i2 = 1
do i = 1, npts {
v = in[i]
if (IS_INDEFR(v))
next
if (i > i2) {
if (i1 > 0) {
dv = (v - v1) / (i - i1)
do j = i2, i-1
out[j] = v + dv * (j - i)
} else {
do j = i2, i-1
out[j] = v
}
}
out[i] = v
v1 = v
i1 = i
i2 = i1+1
}
if (i1 == 0)
call error (1, "No data to interpolate")
else if (i2 <= npts) {
do j = i2, npts
out[j] = v1
}
end
|