1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
|
include <error.h>
include <imhdr.h>
include <imset.h>
include <pkg/dttext.h>
include <smw.h>
include <units.h>
include "dispcor.h"
# Symbol table structure for the dispersion solutions.
define LEN_DC 11 # Length of dispersion solution struct.
define DC_FORMAT Memi[$1] # Type of dispersion
define DC_PAPS Memi[$1+1] # Pointer to aperture numbers
define DC_PAPCEN Memi[$1+2] # Pointer to aperture centers
define DC_PUN Memi[$1+3] # Pointer to units
define DC_PSHIFT Memi[$1+4] # Pointer to shifts
define DC_PCOEFF Memi[$1+5] # Pointer to coefficients
define DC_NAPS Memi[$1+6] # Number of apertures
define DC_OFFSET Memi[$1+7] # Aperture to order offset
define DC_SLOPE Memi[$1+8] # Aperture to order slope
define DC_COEFFS Memi[$1+9] # Dispersion coefficients
define DC_SHIFT Memr[P2R($1+10)]# Dispersion function shift
# DC_OPEN -- Initialize the dispersion data structures
# DC_CLOSE -- Close the dispersion data structures
# DC_GMS -- Get a multispec spectrum
# DC_GMSDB -- Get a multispec dispersion database entry
# DC_REFSHFT -- Get a reference shift
# DC_GEC -- Get an echelle spectrum
# DC_GECDB -- Get an echelle dispersion database entry
# DC_ECMS -- Convert echelle dispersion coeffs to multispec coeffs
# DC_OPEN -- Initialize the dispersion routines. This consists
# of opening a symbol table for the dispersion solution functions. A
# symbol table is used since the same dispersion reference (arc image)
# may be be used multiple times and the database access is slow.
procedure dc_open (stp, db)
pointer stp # Symbol table pointer
char db[SZ_FNAME] # Database name
pointer sym, stopen(), stenter(), stpstr()
begin
stp = stopen ("disp", 10, 10, 10*SZ_FNAME)
sym = stenter (stp, "database", 1)
Memi[sym] = stpstr (stp, db, 0)
end
# DC_CLOSE -- Close the dispersion data structures.
procedure dc_close (stp)
int i
pointer stp, sym, sthead, stnext
begin
# Close each dispersion function and then the symbol table.
for (sym = sthead (stp); sym != NULL; sym = stnext (stp, sym)) {
if (DC_FORMAT(sym) == 1) {
do i = 1, DC_NAPS(sym) {
call un_close (Memi[DC_PUN(sym)+i-1])
call mfree (Memi[DC_PCOEFF(sym)+i-1], TY_DOUBLE)
}
call mfree (DC_PAPS(sym), TY_INT)
call mfree (DC_PAPCEN(sym), TY_REAL)
call mfree (DC_PUN(sym), TY_POINTER)
call mfree (DC_PSHIFT(sym), TY_DOUBLE)
call mfree (DC_PCOEFF(sym), TY_POINTER)
} else if (DC_FORMAT(sym) == 2) {
call un_close (DC_PUN(sym))
call mfree (DC_COEFFS(sym), TY_DOUBLE)
}
}
call stclose (stp)
end
# DC_GMS -- Get a multispec spectrum. This consists of mapping the image
# and setting a MWCS coordinate transformation. If not dispersion corrected
# the dispersion function is found in the database for the reference
# spectra and set in the SMW.
procedure dc_gms (spec, im, smw, stp, ignoreaps, ap, fd1, fd2)
char spec[ARB] #I Spectrum name
pointer im #I IMIO pointer
pointer smw #I SMW pointer
pointer stp #I Dispersion symbol table
int ignoreaps #I Ignore aperture numbers?
pointer ap #O Aperture data structure
int fd1 #I Logfile descriptor
int fd2 #I Logfile descriptor
double wt1, wt2, dval
int i, j, k, k1, k2, l, dc, sfd, naps, naps1, naps2, ncoeffs
pointer sp, str1, str2, papcen, pshift, coeffs, ct1, ct2, un, un1, un2
pointer paps1, paps2, punits1, punits2, pshift1, pshift2, pcoeff1, pcoeff2
bool un_compare()
double smw_c1trand()
int imaccf(), nscan(), stropen()
pointer smw_sctran(), un_open()
errchk dc_gmsdb, dc_refshft, imgstr, smw_sctran, un_open
define done_ 90
begin
call smark (sp)
call salloc (str1, SZ_LINE, TY_CHAR)
call salloc (str2, SZ_LINE, TY_CHAR)
# Set WCS attributes
naps = IM_LEN(im,2)
call calloc (ap, LEN_AP(naps), TY_STRUCT)
do i = 1, naps {
DC_PL(ap,i) = i
DC_CF(ap,i) = NULL
call smw_gwattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), DC_CF(ap,i))
if (i == 1) {
iferr (call mw_gwattrs (SMW_MW(smw,0), 1, "units", Memc[str1],
SZ_LINE))
Memc[str1] = EOS
DC_UN(ap,i) = un_open (Memc[str1])
}
dc = DC_DT(ap,i)
}
# Check if the spectra have been dispersion corrected
# by an earlier version of DISPCOR. If so then don't allow
# another database dispersion correction. This assumes all
# spectra have the same dispersion type. Check for a
# reference spectrum.
#if ((imaccf (im, "REFSPEC1") == NO) ||
# (dc > -1 && imaccf (im, "DCLOG1") == NO)) {
if (imaccf (im, "REFSPEC1") == NO) {
if (fd1 != NULL) {
call fprintf (fd1,
"%s: Resampling using current coordinate system\n")
call pargstr (spec)
}
if (fd2 != NULL) {
call fprintf (fd2,
"%s: Resampling using current coordinate system\n")
call pargstr (spec)
}
goto done_
}
# Get the reference spectra dispersion function from the database
# and determine a reference shift.
iferr {
call imgstr (im, "REFSPEC1", Memc[str1], SZ_LINE)
call sscan (Memc[str1])
call gargwrd (Memc[str1], SZ_LINE)
call gargd (wt1)
if (nscan() == 1)
wt1 = 1.
} then {
call strcpy (spec, Memc[str1], SZ_FNAME)
wt1 = 1.
}
iferr (call dc_gmsdb (Memc[str1], stp, paps1, papcen, punits1, pshift,
pcoeff1, naps1)) {
call sfree (sp)
call erract (EA_ERROR)
}
call salloc (pshift1, naps1, TY_DOUBLE)
call amovd (Memd[pshift], Memd[pshift1], naps1)
if (fd1 != NULL) {
call fprintf (fd1, "%s: REFSPEC1 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt1)
}
if (fd2 != NULL) {
call fprintf (fd2, "%s: REFSPEC1 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt1)
}
iferr (call dc_refshft (spec, stp, Memc[str1], "REFSHFT1", im,
Memi[paps1], Memr[papcen], Memd[pshift1], naps1, fd1, fd2))
;
iferr {
call imgstr (im, "REFSPEC2", Memc[str1], SZ_LINE)
call sscan (Memc[str1])
call gargwrd (Memc[str1], SZ_LINE)
call gargd (wt2)
if (nscan() == 1)
wt2 = 1.
call dc_gmsdb (Memc[str1], stp, paps2, papcen, punits2, pshift,
pcoeff2, naps2)
call salloc (pshift2, naps2, TY_DOUBLE)
call amovd (Memd[pshift], Memd[pshift2], naps2)
if (fd1 != NULL) {
call fprintf (fd1, "%s: REFSPEC2 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt2)
}
if (fd2 != NULL) {
call fprintf (fd2, "%s: REFSPEC2 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt2)
}
iferr (call dc_refshft (spec, stp, Memc[str1],
"REFSHFT2", im, Memi[paps2], Memr[papcen], Memd[pshift2],
naps2, fd1, fd2))
;
} then
wt2 = 0.
# Adjust weights to unit sum.
dval = wt1 + wt2
wt1 = wt1 / dval
wt2 = wt2 / dval
# Enter dispersion function in the MWCS.
do i = 1, naps {
j = DC_AP(ap,i)
for (k1=0; k1<naps1 && Memi[paps1+k1]!=j; k1=k1+1)
;
if (k1 == naps1)
for (k1=0; k1<naps1 && !IS_INDEFI(Memi[paps1+k1]); k1=k1+1)
;
if (k1 == naps1) {
if (ignoreaps == YES)
k1 = 0
else {
call sprintf (Memc[str1], SZ_LINE,
"%s - Missing reference for aperture %d")
call pargstr (spec)
call pargi (j)
call fatal (1, Memc[str1])
}
}
un1 = Memi[punits1+k1]
# The following assumes some knowledge of the data structure in
# order to shortten the the attribute string.
coeffs = Memi[pcoeff1+k1]
if (coeffs == NULL) {
if (DC_DT(ap,i) == 2) {
sfd = NULL
if (wt2 <= 0.)
call sshift1 (Memd[pshift1+k1], DC_CF(ap,i))
} else {
ncoeffs = 6
l = 20 * (ncoeffs + 2)
if (wt2 > 0.)
l = 2 * l
call realloc (DC_CF(ap,i), l, TY_CHAR)
call aclrc (Memc[DC_CF(ap,i)], l)
sfd = stropen (Memc[DC_CF(ap,i)], l, NEW_FILE)
call fprintf (sfd, "%.8g %g")
call pargd (wt1)
call pargd (Memd[pshift1+k1])
dval = DC_DW(ap,i) * (DC_NW(ap,i) - 1) / 2.
call fprintf (sfd, " 1 2 1 %d %g %g")
call pargi (DC_NW(ap,i))
call pargd (DC_W1(ap,i) + dval)
call pargd (dval)
}
} else {
ncoeffs = nint (Memd[coeffs])
l = 20 * (ncoeffs + 2)
if (wt2 > 0.)
l = 2 * l
call realloc (DC_CF(ap,i), l, TY_CHAR)
call aclrc (Memc[DC_CF(ap,i)], l)
sfd = stropen (Memc[DC_CF(ap,i)], l, NEW_FILE)
call fprintf (sfd, "%.8g %g %d %d")
call pargd (wt1)
call pargd (Memd[pshift1+k1])
call pargi (nint (Memd[coeffs+1]))
call pargi (nint (Memd[coeffs+2]))
do k = 3, ncoeffs {
call fprintf (sfd, " %.15g")
call pargd (Memd[coeffs+k])
}
}
if (wt2 > 0.) {
for (k2=0; k2<naps2 && Memi[paps2+k2]!=j; k2=k2+1)
;
if (k2 == naps2)
for (k2=0; k2<naps2 && !IS_INDEFI(Memi[paps2+k2]); k2=k2+1)
;
if (k2 == naps2) {
if (ignoreaps == YES)
k2 = 0
else {
call sprintf (Memc[str1], SZ_LINE,
"%s - Missing reference for aperture %d")
call pargstr (spec)
call pargi (j)
if (sfd != NULL)
call strclose (sfd)
call sfree (sp)
call fatal (1, Memc[str1])
}
}
un2 = Memi[punits2+k2]
if (!un_compare (un1, un2)) {
call sfree (sp)
call error (2,
"Can't combine references with different units")
}
if (DC_DT(ap,i)==2 && !(coeffs==NULL&&Memi[pcoeff2+k2]==NULL)) {
call sfree (sp)
call error (2,
"Can't combine references with non-linear dispersions")
}
coeffs = Memi[pcoeff2+k2]
if (coeffs == NULL) {
if (DC_DT(ap,i) == 2) {
dval = (wt1*Memd[pshift1+k1] + wt2*Memd[pshift2+k2]) /
(wt1 + wt2)
call sshift1 (dval, DC_CF(ap,i))
} else {
call fprintf (sfd, " %.8g %g")
call pargd (wt2)
call pargd (Memd[pshift2+k2])
dval = DC_DW(ap,i) * (DC_NW(ap,i) - 1) / 2.
call fprintf (sfd, " 1 2 1 %d %g %g")
call pargi (DC_NW(ap,i))
call pargd (DC_W1(ap,i) + dval)
call pargd (dval)
}
} else {
call fprintf (sfd, " %.8g %g %d %d")
call pargd (wt2)
call pargd (Memd[pshift2+k2])
call pargi (nint (Memd[coeffs+1]))
call pargi (nint (Memd[coeffs+2]))
ncoeffs = nint (Memd[coeffs])
do k = 3, ncoeffs {
call fprintf (sfd, " %.15g")
call pargd (Memd[coeffs+k])
}
}
}
if (i == 1) {
un = un1
if (UN_LABEL(un) != EOS)
call mw_swattrs (SMW_MW(smw,0), 1, "label", UN_LABEL(un))
if (UN_UNITS(un) != EOS)
call mw_swattrs (SMW_MW(smw,0), 1, "units", UN_UNITS(un))
call un_close (DC_UN(ap,i))
DC_UN(ap,i) = un
} else if (!un_compare (un, un1)) {
call sfree (sp)
call error (3, "Units must be the same for all apertures")
}
DC_DT(ap,i) = 2
call smw_swattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), Memc[DC_CF(ap,i)])
if (sfd != NULL)
call strclose (sfd)
}
# Update the linear part of WCS.
ct1 = smw_sctran (smw, "logical", "physical", 2)
ct2 = smw_sctran (smw, "physical", "world", 3)
do i = 1, naps {
call smw_gwattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), DC_CF(ap,i))
wt1 = nint (smw_c1trand (ct1, double(i)))
call smw_c2trand (ct2, double(DC_NW(ap,i)), wt1, DC_W2(ap,i), wt2)
DC_DW(ap,i) = (DC_W2(ap,i) - DC_W1(ap,i)) / (DC_NW(ap,i) - 1)
call smw_swattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), Memc[DC_CF(ap,i)])
}
call smw_ctfree (ct1)
call smw_ctfree (ct2)
done_ # Set aperture parameters in terms of logical image.
ct1 = smw_sctran (smw, "physical", "logical", 1)
j = nint (smw_c1trand (ct1, 1D0))
do i = 1, naps {
k = nint (smw_c1trand (ct1, double(DC_NW(ap,i))))
DC_NW(ap,i) = min (IM_LEN(im,1), max (j, k))
}
call smw_ctfree (ct1)
ct1 = smw_sctran (smw, "logical", "world", 3)
do i = 1, naps {
wt1 = i
call smw_c2trand (ct1, 1D0, wt1, DC_W1(ap,i), wt2)
call smw_c2trand (ct1, double(DC_NW(ap,i)), wt1, DC_W2(ap,i), wt2)
DC_DW(ap,i) = (DC_W2(ap,i) - DC_W1(ap,i)) / (DC_NW(ap,i) - 1)
}
call smw_ctfree (ct1)
do i = 1, naps
call mfree (DC_CF(ap,i), TY_CHAR)
call sfree (sp)
end
# DC_GMSDB -- Get a dispersion database entry.
# The database entry is read only once from the database and stored in a
# symbol table keyed by the spectrum name. Subsequent requests for the
# reference spectrum returns the data from the symbol table.
procedure dc_gmsdb (spec, stp, paps, papcen, punits, pshift, pcoeff, naps)
char spec[ARB] # Spectrum image name
pointer stp # Symbol table pointer
pointer paps # Pointer to aperture numbers
pointer papcen # Pointer to aperture centers
pointer punits # Pointer to units
pointer pshift # Pointer to shifts
pointer pcoeff # Pointer to coefficients
int naps # Number of apertures
double dval
int i, n, dtgeti(), getline(), ctod()
real low, high, dtgetr()
pointer sp, str, coeffs, sym, db, dt, dt1
pointer stfind(), stenter(), strefsbuf(), dtmap1(), un_open()
errchk dtmap1, dtgeti, dtgad, un_open
begin
# Check if dispersion solution is in the symbol table from a previous
# call. If not in the symbol table get it from the database and
# store it in the symbol table.
sym = stfind (stp, spec)
if (sym == NULL) {
call smark (sp)
call salloc (str, SZ_LINE, TY_CHAR)
call strcpy ("id", Memc[str], SZ_LINE)
call imgcluster (spec, Memc[str+2], SZ_LINE-2)
call xt_imroot (Memc[str+2], Memc[str+2], SZ_LINE-2)
db = strefsbuf (stp, Memi[stfind (stp, "database")])
dt = dtmap1 (Memc[db], Memc[str], READ_ONLY)
call strcpy ("ec", Memc[str], SZ_LINE)
call imgcluster (spec, Memc[str+2], SZ_LINE-2)
call xt_imroot (Memc[str+2], Memc[str+2], SZ_LINE-2)
ifnoerr (dt1 = dtmap1 (Memc[db], Memc[str], READ_ONLY)) {
call sprintf (Memc[str], SZ_LINE,
"Ambiguous database files: %s/%s and %s/%s")
call pargstr (DT_DNAME(dt))
call pargstr (DT_FNAME(dt))
call pargstr (DT_DNAME(dt1))
call pargstr (DT_FNAME(dt1))
call dtunmap (dt)
call dtunmap (dt1)
call fatal (3, Memc[str])
}
naps = max (1, DT_NRECS(dt))
call calloc (paps, naps, TY_INT)
call calloc (papcen, naps, TY_REAL)
call calloc (punits, naps, TY_POINTER)
call calloc (pshift, naps, TY_DOUBLE)
call calloc (pcoeff, naps, TY_POINTER)
if (DT_NRECS(dt) > 0) {
for (i = 1; i <= naps; i = i + 1) {
iferr (Memi[paps+i-1] = dtgeti (dt, i, "aperture"))
Memi[paps+i-1] = INDEFI
iferr (low = dtgetr (dt, i, "aplow"))
low = INDEF
iferr (high = dtgetr (dt, i, "aphigh"))
high = INDEF
if (IS_INDEF(low) || IS_INDEF(high))
Memr[papcen+i-1] = 0.
else
Memr[papcen+i-1] = (low + high) / 2.
iferr (call dtgstr (dt, i, "units", Memc[str], SZ_LINE))
call strcpy ("Angstroms", Memc[str], SZ_LINE)
Memi[punits+i-1] = un_open (Memc[str])
iferr (Memd[pshift+i-1] = dtgetr (dt, i, "shift"))
Memd[pshift+i-1] = 0.
iferr {
n = dtgeti (dt, i, "coefficients")
call malloc (coeffs, 1+n, TY_DOUBLE)
Memd[coeffs] = n
call dtgad (dt, i, "coefficients", Memd[coeffs+1], n, n)
Memi[pcoeff+i-1] = coeffs
} then
Memi[pcoeff+i-1] = NULL
}
} else {
Memi[paps] = INDEFI
Memr[papcen] = INDEFR
Memi[punits] = un_open ("")
Memd[pshift] = 0.
call malloc (coeffs, 100, TY_DOUBLE)
n = 3
call seek (Memi[dt], BOF)
while (getline (Memi[dt], Memc[str]) != EOF) {
i = 1
if (ctod (Memc[str], i, dval) == 0)
next
if (mod (n, 100) == 0)
call realloc (coeffs, n+100, TY_DOUBLE)
Memd[coeffs+n] = dval
n = n + 1
}
Memd[coeffs] = n - 1
Memd[coeffs+1] = 5
Memd[coeffs+2] = n - 3
Memi[pcoeff] = coeffs
}
call dtunmap (dt)
call sfree (sp)
sym = stenter (stp, spec, LEN_DC)
DC_FORMAT(sym) = 1
DC_PAPS(sym) = paps
DC_PAPCEN(sym) = papcen
DC_PUN(sym) = punits
DC_PSHIFT(sym) = pshift
DC_PCOEFF(sym) = pcoeff
DC_NAPS(sym) = naps
} else {
if (DC_FORMAT(sym) != 1)
call error (1, "Not a multispec dispersion function")
paps = DC_PAPS(sym)
papcen = DC_PAPCEN(sym)
punits = DC_PUN(sym)
pshift = DC_PSHIFT(sym)
pcoeff = DC_PCOEFF(sym)
naps = DC_NAPS(sym)
}
end
# DC_REFSHFT -- Compute dispersion shift.
procedure dc_refshft (spec, stp, refspec, keywrd, im, aps, apcens, shifts,
naps, fd1, fd2)
char spec[ARB] # Spectrum to be corrected
pointer stp # Symbol table pointer
char refspec[ARB] # Reference spectrum
char keywrd[ARB] # Header keyword (for log only)
pointer im # IMIO pointer to spectrum to be corrected
int aps[naps] # Reference apertures
real apcens[naps] # Reference aperture centers
double shifts[naps] # Reference aperture shifts (to be modified)
int naps # Number of refernce apertures
int fd1 # Logfile descriptor
int fd2 # Logfile descriptor
int i, j, k, pnaps
double apcen, shift, sumx, sumy, sumxx, sumyy, sumxy, a, b
pointer sp, refshft, option, paps, papcen, punits, pshift, pcoeff
bool streq()
errchk imgstr, dc_gmsdb
begin
call smark (sp)
call salloc (refshft, SZ_FNAME, TY_CHAR)
call salloc (option, SZ_FNAME, TY_CHAR)
# Parse header parameter.
call imgstr (im, keywrd, Memc[refshft], SZ_FNAME)
call sscan (Memc[refshft])
call gargwrd (Memc[refshft], SZ_FNAME)
if (streq (Memc[refshft], refspec)) {
call sfree (sp)
return
}
call gargwrd (Memc[option], SZ_FNAME)
# Get reference shift apertures.
call dc_gmsdb (Memc[refshft], stp, paps, papcen, punits, pshift,
pcoeff, pnaps)
if (pnaps == 0) {
call sfree (sp)
return
}
# Compute mean shift and RMS.
sumy = 0.
sumyy = 0.
do i = 1, pnaps {
sumy = sumy + Memd[pshift+i-1]
sumyy = sumyy + Memd[pshift+i-1] ** 2
}
sumy = sumy / pnaps
sumyy = sqrt (max (0.D0, sumyy / pnaps - sumy ** 2))
# Print.
if (fd1 != NULL) {
call fprintf (fd1, "%s: %s = '%s %s', shift = %.6g, rms = %.6g\n")
call pargstr (spec)
call pargstr (keywrd)
call pargstr (Memc[refshft])
call pargstr (Memc[option])
call pargd (sumy)
call pargd (sumyy)
}
if (fd2 != NULL) {
call fprintf (fd2, "%s: %s = '%s %s', shift = %.6g, rms = %.6g\n")
call pargstr (spec)
call pargstr (keywrd)
call pargstr (Memc[refshft])
call pargstr (Memc[option])
call pargd (sumy)
call pargd (sumyy)
}
if (streq (Memc[option], "interp")) {
if (pnaps > 1) {
sumx = 0.
sumy = 0.
sumxx = 0.
sumyy = 0.
sumxy = 0.
do i = 0, pnaps-1 {
apcen = Memr[papcen+i]
shift = Memd[pshift+i]
sumx = sumx + apcen
sumy = sumy + shift
sumxx = sumxx + apcen * apcen
sumyy = sumyy + shift * shift
sumxy = sumxy + apcen * shift
}
b = pnaps * sumxx - sumx * sumx
a = (sumy * sumxx - sumx * sumxy) / b
b = (pnaps * sumxy - sumx * sumy) / b
} else {
a = sumy
b = 0.
}
do i = 1, naps
shifts[i] = shifts[i] + a + b * apcens[i]
if (fd1 != NULL) {
call fprintf (fd1, "\tintercept = %.6g, slope = %.6g\n")
call pargd (a)
call pargd (b)
}
if (fd2 != NULL) {
call fprintf (fd2, "\tintercept = %.6g, slope = %.6g\n")
call pargd (a)
call pargd (b)
}
} else if (streq (Memc[option], "nearest")) {
do i = 1, naps {
k = 0
sumy = abs (apcens[i] - Memr[papcen])
for (j = 1; j < pnaps; j = j + 1)
if (abs (apcens[i] - Memr[papcen+j]) < sumy) {
k = j
sumy = abs (apcens[i] - Memr[papcen+k])
}
shifts[i] = shifts[i] + Memd[pshift+k]
if (fd1 != NULL) {
call fprintf (fd1, "\t%4d %7.2f %4d %7.2f %.6g\n")
call pargi (aps[i])
call pargr (apcens[i])
call pargi (Memi[paps+k])
call pargr (Memr[papcen+k])
call pargd (Memd[pshift+k])
}
if (fd2 != NULL) {
call fprintf (fd2, "\t%4d %7.2f %4d %7.2f %.6g\n")
call pargi (aps[i])
call pargr (apcens[i])
call pargi (Memi[paps+k])
call pargr (Memr[papcen+k])
call pargd (Memd[pshift+k])
}
}
} else
call aaddkd (shifts, sumy, shifts, naps)
call sfree (sp)
end
# DC_GEC -- Get an echelle spectrum. This consists of mapping the image
# and setting a MWCS coordinate transformation. If not dispersion corrected
# the dispersion function is found in the database for the reference
# spectra and set in the SMW.
procedure dc_gec (spec, im, smw, stp, ap, fd1, fd2)
char spec[ARB] #I Spectrum name
pointer im #I IMIO pointer
pointer smw #I SMW pointers
pointer stp #I Symbol table
pointer ap #O Aperture data structure
int fd1 #I Logfile descriptor
int fd2 #I Logfile descriptor
double wt1, wt2, dval
int i, j, k, l, dc, sfd, naps, ncoeffs, offset, slope
pointer sp, str1, str2, coeff, coeffs, ct1, ct2, un1, un2, un3
pointer pshift1, pshift2, pshift3, pcoeff1, pcoeff2, pcoeff3
bool un_compare()
double smw_c1trand()
int imaccf(), nscan(), stropen()
pointer smw_sctran(), un_open()
errchk dc_gecdb, imgstr, smw_sctran, un_open
define done_ 90
begin
call smark (sp)
call salloc (str1, SZ_LINE, TY_CHAR)
call salloc (str2, SZ_LINE, TY_CHAR)
coeff = NULL
# Set WCS attributes
naps = IM_LEN(im,2)
call calloc (ap, LEN_AP(naps), TY_STRUCT)
do i = 1, naps {
DC_PL(ap,i) = i
call smw_gwattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), coeff)
if (i == 1) {
iferr (call mw_gwattrs (SMW_MW(smw,0), 1, "units", Memc[str1],
SZ_LINE))
Memc[str1] = EOS
DC_UN(ap,i) = un_open (Memc[str1])
}
dc = DC_DT(ap,i)
}
# Check if the spectra have been dispersion corrected
# by an earlier version of DISPCOR. If so then don't allow
# another database dispersion correction. This assumes all
# spectra have the same dispersion type. Check for a
# reference spectrum.
#if ((imaccf (im, "REFSPEC1") == NO) ||
# (dc > -1 && imaccf (im, "DCLOG1") == NO)) {
if (imaccf (im, "REFSPEC1") == NO) {
if (fd1 != NULL) {
call fprintf (fd1,
"%s: Resampling using current coordinate system\n")
call pargstr (spec)
}
if (fd2 != NULL) {
call fprintf (fd2,
"%s: Resampling using current coordinate system\n")
call pargstr (spec)
}
goto done_
}
# Get the reference spectra dispersion function from the database
# and determine a reference shift.
iferr {
call imgstr (im, "REFSPEC1", Memc[str1], SZ_LINE)
call sscan (Memc[str1])
call gargwrd (Memc[str1], SZ_LINE)
call gargd (wt1)
if (nscan() == 1)
wt1 = 1.
} then {
call strcpy (spec, Memc[str1], SZ_LINE)
wt1 = 1.
}
call salloc (pshift1, naps, TY_DOUBLE)
call salloc (pcoeff1, naps, TY_POINTER)
slope = 0
iferr (call dc_gecdb (Memc[str1], stp, ap, un1, Memd[pshift1],
Memi[pcoeff1], naps, offset, slope)) {
call sfree (sp)
call erract (EA_ERROR)
}
if (fd1 != NULL) {
call fprintf (fd1, "%s: REFSPEC1 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt1)
}
if (fd2 != NULL) {
call fprintf (fd2, "%s: REFSPEC1 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt1)
}
iferr {
call imgstr (im, "refshft1", Memc[str1], SZ_LINE)
call salloc (pshift3, naps, TY_DOUBLE)
call salloc (pcoeff3, naps, TY_POINTER)
call dc_gecdb (Memc[str1], stp, ap, un3, Memd[pshift3],
Memi[pcoeff3], naps, offset, slope)
if (fd1 != NULL) {
call fprintf (fd1, "%s: REFSHFT1 = '%s', shift = %.6g\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (Memd[pshift3])
}
if (fd2 != NULL) {
call fprintf (fd2, "%s: REFSHFT1 = '%s', shift = %.6g\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (Memd[pshift3])
}
call aaddd (Memd[pshift1], Memd[pshift3], Memd[pshift1], naps)
} then
;
iferr {
call imgstr (im, "REFSPEC2", Memc[str1], SZ_LINE)
call sscan (Memc[str1])
call gargwrd (Memc[str1], SZ_LINE)
call gargd (wt2)
if (nscan() == 1)
wt2 = 1.
call salloc (pshift2, naps, TY_DOUBLE)
call salloc (pcoeff2, naps, TY_POINTER)
call dc_gecdb (Memc[str1], stp, ap, un2, Memd[pshift2],
Memi[pcoeff2], naps, offset, slope)
if (fd1 != NULL) {
call fprintf (fd1, "%s: REFSPEC2 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt2)
}
if (fd2 != NULL) {
call fprintf (fd2, "%s: REFSPEC2 = '%s %.8g'\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (wt2)
}
iferr {
call imgstr (im, "refshft2", Memc[str1], SZ_LINE)
call salloc (pshift3, naps, TY_DOUBLE)
call salloc (pcoeff3, naps, TY_POINTER)
call dc_gecdb (Memc[str1], stp, ap, un3, Memd[pshift3],
Memi[pcoeff3], naps, offset, slope)
if (fd1 != NULL) {
call fprintf (fd1, "%s: REFSHFT2 = '%s', shift = %.6g\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (Memd[pshift3])
}
if (fd2 != NULL) {
call fprintf (fd2, "%s: REFSHFT2 = '%s', shift = %.6g\n")
call pargstr (spec)
call pargstr (Memc[str1])
call pargd (Memd[pshift3])
}
call aaddd (Memd[pshift1], Memd[pshift3], Memd[pshift1], naps)
} then
;
} then
wt2 = 0.
# Adjust weights to unit sum.
dval = wt1 + wt2
wt1 = wt1 / dval
wt2 = wt2 / dval
# Enter dispersion function in the MWCS.
do i = 1, naps {
coeffs = Memi[pcoeff1+i-1]
ncoeffs = nint (Memd[coeffs])
l = 20 * (ncoeffs + 2)
if (wt2 > 0.)
l = 2 * l
call realloc (coeff, l, TY_CHAR)
call aclrc (Memc[coeff], l)
sfd = stropen (Memc[coeff], l, NEW_FILE)
call fprintf (sfd, "%.8g %g")
call pargd (wt1)
call pargd (Memd[pshift1+i-1])
# The following assumes some knowledge of the data structure in
# order to shortten the the attribute string.
call fprintf (sfd, " %d %d %.8g %.8g")
call pargi (nint (Memd[coeffs+1]))
call pargi (nint (Memd[coeffs+2]))
call pargd (Memd[coeffs+3])
call pargd (Memd[coeffs+4])
do j = 5, ncoeffs {
call fprintf (sfd, " %.15g")
call pargd (Memd[coeffs+j])
}
if (wt2 > 0.) {
coeffs = Memi[pcoeff2+i-1]
ncoeffs = nint (Memd[coeffs])
call fprintf (sfd, "%.8g %g")
call pargd (wt2)
call pargd (Memd[pshift2+i-1])
call fprintf (sfd, " %d %d %.8g %.8g")
call pargi (nint (Memd[coeffs+1]))
call pargi (nint (Memd[coeffs+2]))
call pargd (Memd[coeffs+3])
call pargd (Memd[coeffs+4])
do j = 5, ncoeffs {
call fprintf (sfd, " %.15g")
call pargd (Memd[coeffs+j])
}
if (!un_compare (un1, un2)) {
call sfree (sp)
call error (2,
"Can't combine references with different units")
}
}
if (i == 1) {
if (UN_LABEL(un1) != EOS)
call mw_swattrs (SMW_MW(smw,0), 1, "label", UN_LABEL(un1))
if (UN_UNITS(un1) != EOS)
call mw_swattrs (SMW_MW(smw,0), 1, "units", UN_UNITS(un1))
call un_close (DC_UN(ap,i))
DC_UN(ap,i) = un1
}
DC_DT(ap,i) = 2
call smw_swattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), Memc[coeff])
call strclose (sfd)
}
# Update the linear part of WCS.
ct1 = smw_sctran (smw, "logical", "physical", 2)
ct2 = smw_sctran (smw, "physical", "world", 3)
do i = 1, naps {
call smw_gwattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), coeff)
wt1 = nint (smw_c1trand (ct1, double(i)))
call smw_c2trand (ct2, 1D0, wt1, DC_W1(ap,i), wt2)
call smw_c2trand (ct2, double(DC_NW(ap,i)), wt1, DC_W2(ap,i), wt2)
DC_DW(ap,i) = (DC_W2(ap,i) - DC_W1(ap,i)) / (DC_NW(ap,i) - 1)
call smw_swattrs (smw, DC_PL(ap,i), 1, DC_AP(ap,i), DC_BM(ap,i),
DC_DT(ap,i), DC_W1(ap,i), DC_DW(ap,i), DC_NW(ap,i), DC_Z(ap,i),
DC_LW(ap,i), DC_UP(ap,i), Memc[coeff])
}
call smw_ctfree (ct1)
call smw_ctfree (ct2)
done_ # Set aperture parameters in terms of logical image.
ct1 = smw_sctran (smw, "physical", "logical", 1)
j = nint (smw_c1trand (ct1, 1D0))
do i = 1, naps {
k = nint (smw_c1trand (ct1, double(DC_NW(ap,i))))
DC_NW(ap,i) = min (IM_LEN(im,1), max (j, k))
}
call smw_ctfree (ct1)
ct1 = smw_sctran (smw, "logical", "world", 3)
do i = 1, naps {
wt1 = i
call smw_c2trand (ct1, 1D0, wt1, DC_W1(ap,i), wt2)
call smw_c2trand (ct1, double(DC_NW(ap,i)), wt1, DC_W2(ap,i), wt2)
DC_DW(ap,i) = (DC_W2(ap,i) - DC_W1(ap,i)) / (DC_NW(ap,i) - 1)
}
call smw_ctfree (ct1)
call mfree (coeff, TY_CHAR)
call sfree (sp)
end
# DC_GECDB -- Get a dispersion database entry.
# The database entry is read only once from the database and stored in a
# symbol table keyed by the spectrum name. Subsequent requests for the
# reference spectrum returns the data from the symbol table.
procedure dc_gecdb (spec, stp, ap, un, shifts, pcoeff, naps, offset, slope)
char spec[ARB] # Spectrum image name
pointer stp # Symbol table pointer
pointer ap # Aperture data structure
pointer un # Units
double shifts[naps] # Shifts
pointer pcoeff[naps] # Pointer to coefficients
int naps # Number of apertures
int offset # Aperture to order offset
int slope # Aperture to order slope
double shift
real dtgetr()
int i, rec, offst, slpe, n, dtlocate(), dtgeti()
pointer sp, str, coeffs, sym, db, dt
pointer stfind(), stenter(), strefsbuf(), dtmap1(), un_open()
errchk dtmap1, dtlocate, dtgeti, dtgad, un_open
begin
# Check if dispersion solution is in the symbol table from a previous
# call. If not in the symbol table get it from the database and
# store it in the symbol table.
sym = stfind (stp, spec)
if (sym == NULL) {
call smark (sp)
call salloc (str, SZ_LINE, TY_CHAR)
call strcpy ("ec", Memc[str], SZ_LINE)
call imgcluster (spec, Memc[str+2], SZ_LINE-2)
call xt_imroot (Memc[str+2], Memc[str+2], SZ_LINE-2)
db = strefsbuf (stp, Memi[stfind (stp, "database")])
dt = dtmap1 (Memc[db], Memc[str], READ_ONLY)
call sprintf (Memc[str], SZ_LINE, "ecidentify %s")
call pargstr (spec)
iferr (rec = dtlocate (dt, Memc[str])) {
call sprintf (Memc[str], SZ_LINE,
"DISPCOR: Echelle dispersion function not found (%s/%s)")
call pargstr (DT_DNAME(dt))
call pargstr (DT_FNAME(dt))
call fatal (0, Memc[str])
}
iferr (call dtgstr (dt, rec, "units", Memc[str], SZ_LINE))
call strcpy ("Angstroms", Memc[str], SZ_LINE)
un = un_open (Memc[str])
iferr (offst = dtgeti (dt, rec, "offset"))
offst = 0
iferr (slpe = dtgeti (dt, rec, "slope"))
slpe = 1
iferr (shift = dtgetr (dt, rec, "shift"))
shift = 0.
n = dtgeti (dt, rec, "coefficients")
call malloc (coeffs, n, TY_DOUBLE)
call dtgad (dt, rec, "coefficients", Memd[coeffs], n, n)
sym = stenter (stp, spec, LEN_DC)
DC_FORMAT(sym) = 2
DC_PUN(sym) = un
DC_OFFSET(sym) = offst
DC_SLOPE(sym) = slpe
DC_SHIFT(sym) = shift
DC_COEFFS(sym) = coeffs
call dtunmap (dt)
call sfree (sp)
} else {
if (DC_FORMAT(sym) != 2)
call error (1, "Not an echelle dispersion function")
un = DC_PUN(sym)
offst = DC_OFFSET(sym)
slpe = DC_SLOPE(sym)
coeffs = DC_COEFFS(sym)
shift = DC_SHIFT(sym)
}
# Check aperture to order parameters.
if (slope == 0) {
offset = offst
slope = slpe
} else if (offset != offst || slope != slpe) {
call eprintf (
"WARNING: Echelle order offsets/slopes are not the same.\n")
}
# Convert to multispec coefficients
do i = 1, naps {
DC_BM(ap,i) = offset + slope * DC_AP(ap,i)
call dc_ecms (DC_BM(ap,i), Memd[coeffs], pcoeff[i])
shifts[i] = shift / DC_BM(ap,i)
}
end
# DC_ECMS -- Convert echelle dispersion coefficients to multispec coefficients
procedure dc_ecms (order, eccoeff, mscoeff)
int order # Echelle order
double eccoeff[ARB] # Echelle dispersion coefficients
pointer mscoeff # Pointer to multispec coefficients
int i, j, k, type, xorder, yorder
double xmin, xmax, ymin, ymax, ymaxmin, yrange, y, coeff, a, b, c
begin
type = nint (eccoeff[1])
xorder = nint (eccoeff[2])
yorder = nint (eccoeff[3])
xmin = eccoeff[5]
xmax = eccoeff[6]
ymin = eccoeff[7]
ymax = eccoeff[8]
yrange = 2. / (ymax - ymin)
ymaxmin = (ymax + ymin) / 2
y = (order - ymaxmin) * yrange
call malloc (mscoeff, 5+xorder, TY_DOUBLE)
Memd[mscoeff] = 4+xorder
Memd[mscoeff+1] = type
Memd[mscoeff+2] = xorder
Memd[mscoeff+3] = xmin
Memd[mscoeff+4] = xmax
switch (type) {
case 1:
do k = 1, xorder {
j = 9 + k - 1
coeff = eccoeff[j]
if (yorder > 1) {
j = j + xorder
coeff = coeff + eccoeff[j] * y
}
if (yorder > 2) {
a = 1
b = y
do i = 3, yorder {
c = 2 * y * b - a
j = j + xorder
coeff = coeff + eccoeff[j] * c
a = b
b = c
}
}
Memd[mscoeff+4+k] = coeff / order
}
case 2:
do k = 1, xorder {
j = 9 + k - 1
coeff = eccoeff[j]
if (yorder > 1) {
j = j + xorder
coeff = coeff + eccoeff[j] * y
}
if (yorder > 2) {
a = 1
b = y
do i = 3, yorder {
c = ((2 * i - 3) * y * b - (i - 2) * a) / (i - 1)
j = j + xorder
coeff = coeff + eccoeff[j] * c
a = b
b = c
}
}
Memd[mscoeff+4+k] = coeff / order
}
}
end
|