aboutsummaryrefslogtreecommitdiff
path: root/noao/onedspec/fortran/nlcfit.f
blob: 80aff616fc60167681234d7d47e8726b74dce18d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
SUBROUTINE NLCFIT(IM,INN,IN,INTA,XEPSI,XV,XYD)
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C     NONLINEAR LEAST SQUARES FITTING USING SIMPLEX
C     METHOD AND QUADRATIC APPROXIMATION.
C     WITH LINEAR PARAMETER ELIMINATION.
C-------------------------------------------------------------
      INTEGER IM,INN,IN,INTA
      REAL XEPSI,XV(IM),XYD(IM)
      COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
      COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
      COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
      COMMON /NLC/ GA(120,5),NN
	COMMON /NLCOUT/ FF(120),PARS(10),BPARS(10)
      DIMENSION SUMC(11),XC(11),XE(11),XCO(11),XR(11)
      REAL LERROR
C-----
C RESET ERROR HANDLER
c...UNIX has general handler only!
c	call trpfpe (0, 0d0)
C-----
C FLOAT OVERFLOW
c	CALL ERRSET(72,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C FLOAT UNDERFLOW
c	CALL ERRSET(74,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C EXP TOO SMALL
c	CALL ERRSET(89,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C EXP TOO LRGE
c	CALL ERRSET(88,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C-----
      LERROR=1.E30
	IFLAG=0
C     COEFFICIENTS
C-----
C ASSIGN EXTERNAL PARAMETERS
	M=IM
	NN=INN
	N=IN
	NT=INTA
	EPSI=XEPSI
	DO 8100 I=1,M
		V(I)=XV(I)
		YD(I,1)=XYD(I)
8100	CONTINUE
C-----
      T=1.0
      A=1.0
      B=0.5
      G=2.0
      ICOUNT=0
      INDEX=1
      IQ=3*N
      DO 140 J=1,N
140   X(1,J)=1.0
160   DO 172 J=1,N
172   XF(J)=X(1,J)
      CALL FVAL
      Y(1)=YVAL
      SOLD=YVAL
C---- CONSTRUCT SIMPLEX
      EN=N
      PN=(SQRT(EN+1.0)-1.0+EN)/(EN*SQRT(2.0))*T
      QN=(SQRT(EN+1.0)-1.0)/(EN*SQRT(2.0))*T
      NP1=N+1
      DO 305 I=2,NP1
      INDEX=I
      DO 300 J=1,N
      EJ=0.0
      EI=0.0
      IF(I-1.NE.J) EJ=1.0
      IF(I-1.EQ.J) EI=1.0
      X(I,J)=X(1,J)+EI*PN+EJ*QN
300   XF(J)=X(I,J)
      CALL FVAL
305   Y(I)=YVAL
C---- DETERMINE MAX XH
310   IH=1
      DO 350 J=1,NP1
      IF(Y(IH).GE.Y(J)) GOTO 350
      IH=J
350   CONTINUE
C---- DETERMINE SECOND MAX XS
      IS=1
      IF(IH.NE.1) GOTO 470
      IS=2
470   CONTINUE
      DO 420 J=1,NP1
      IF(J.EQ.IH) GOTO 420
      IF(Y(IS).GE.Y(J)) GOTO 420
      IS=J
420   CONTINUE
C---- DETERMINE MIN XL
      IL=1
      DO 480 J=1,NP1
      IF(Y(IL).LE.Y(J)) GOTO 480
      IL=J
480   CONTINUE
C---- COMPUTE CENTROID
      DO 510 J=1,N
510   SUMC(J)=0.0
      EN=N
      DO 570 J=1,N
      DO 560 I=1,NP1
      IF(I.EQ.IH) GOTO 560
      SUMC(J)=SUMC(J)+X(I,J)
560   CONTINUE
570   XC(J)=1.0/EN*SUMC(J)
      DO 573 J=1,N
573   XF(J)=XC(J)
      CALL FVAL
      YBAR=YVAL
      SUM=0.0
      DO 577 I=1,NP1
  577 SUM = SUM + ((Y(I)-YBAR)/YBAR)**2
      ICOUNT=ICOUNT+1
      ERROR=SQRT(SUM/EN)
      IQ=IQ-1
      IF(IQ.EQ.-1) CALL QADFIT
      IF(IFLAG.EQ.1) GOTO 1990
      IF(ERROR.LE.EPSI) GOTO 1990
      IF(ABS(LERROR-ERROR).LT.EPSI) GO TO 1990
      LERROR=ERROR
C---- DO A REFLECTION
      DO 600 J=1,N
600   XR(J)=(1.0+A)*XC(J)-A*X(IH,J)
      DO 610 J=1,N
610   XF(J)=XR(J)
      INDEX=N+2
      CALL FVAL
      YXR=YVAL
      IF(YXR.GE.Y(IL)) GOTO 750
C---- DO A EXPANSION
      DO 660 J=1,N
660   XE(J)=G*XR(J)+(1.0-G)*XC(J)
      DO 680 J=1,N
680   XF(J)=XE(J)
      INDEX=N+3
      CALL FVAL
      YXE=YVAL
      IF(YXE.GT.Y(IL)) GOTO 760
      DO 730 J=1,N
730   X(IH,J)=XE(J)
      Y(IH)=YXE
      NP3=N+3
      DO 735 K=1,M
735   F(IH,K)=F(NP3,K)
      GOTO 310
750   IF(YXR.GT.Y(IS)) GOTO 800
760   DO 780 J=1,N
780   X(IH,J)=XR(J)
      Y(IH)=YXR
      NP2=N+2
      DO 785 K=1,M
785   F(IH,K)=F(NP2,K)
      GOTO 310
800   IF(YXR.GT.Y(IH)) GOTO 830
      DO 820 J=1,N
820   X(IH,J)=XR(J)
C---- DO A CONTRACTION
830   DO 840 J=1,N
840   XCO(J)=B*X(IH,J)+(1.0-B)*XC(J)
      DO 860 J=1,N
860   XF(J)=XCO(J)
      INDEX=N+2
      CALL FVAL
      YXCO=YVAL
      IF(YXCO.GT.Y(IH)) GOTO 930
      DO 910 J=1,N
910   X(IH,J)=XCO(J)
      Y(IH)=YXCO
      NP2=N+2
      DO 915 K=1,M
915   F(IH,K)=F(NP2,K)
      GOTO 310
930   DO 960 I=1,NP1
      INDEX=I
      DO 955 J=1,N
950   X(I,J)=0.5*(X(I,J)+X(IL,J))
955   XF(J)=X(I,J)
      CALL FVAL
960   Y(I)=YVAL
C---- HAS A MIN BEEN REACHED?
      GOTO 310
1990  DO 1594 J=1,N
	PARS(J)=X(IL,J)
1594  XF(J)=X(IL,J)
      CALL FVAL
	DO 1595 I=1,NT
1595	BPARS(I)=BB(I)
      CALL INDEXD
	RETURN
      END
C---------------------------------------------------------------------
      SUBROUTINE MATIN
C---- DETERMINE INVERSE OF MATRIX
      COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
      COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
      COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
      COMMON /NLC/ GA(120,5),NN
      DIMENSION E(15,120),EN(20),T(20),Z(11,11),YY(20)
      EQUIVALENCE (EM(1,1),E(1,1))
      DO 20 I=1,N
      DO 20 J=1,N
      IF(I.EQ.J) GOTO 10
      Z(I,J)=0.0
      GOTO 20
10    Z(I,J)=1.0
20    CONTINUE
      DO 120 J0=1,N
      I0=J0
      DO 30 I=1,N
30    YY(I)=GG(I,J0)
      DO 40 I=1,N
      EN(I) = 0.
      T(I)=0.0
      DO 40 J=1,N
40    T(I)=T(I)+Z(I,J)*YY(J)
      IF(T(J0).EQ.0.) GO TO 65
      DO 60 J=1,N
      IF(J.EQ.J0) GOTO 50
      EN(J)=-T(J)/T(J0)
      GOTO 60
50    EN(J)=1./T(J0)
60    CONTINUE
   65 DO 80 I = 1,N
      DO 80 J=1,N
      IF (I.EQ.J) GOTO 70
      E(I,J)=0.0
      GOTO 80
70    E(I,J)=1.0
80    CONTINUE
      DO 90 J=1,N
90    E(J,J0)=EN(J)
      DO 100 K=1,N
      DO 100 I=1,N
      GINV(K,I)=0.0
      DO 100 J=1,N
100   GINV(K,I)=GINV(K,I)+E(K,J)*Z(J,I)
      DO 110 J=1,N
      DO 110 I=1,N
110   Z(I,J)=GINV(I,J)
120   CONTINUE
      RETURN
      END
C-------------------------------------------------------------------------
      SUBROUTINE QADFIT
      COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
      COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
      COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
      COMMON /NLC/ GA(120,5),NN
      DIMENSION A(11,11),DELX(20),E(20),F0(20)
      NP1=N+1
C---- QUADRATIC COEFFICIENTS
      II=0
      DO 30 K=1,M
      II=0
      DO 30 I=1,NP1
      IF(I.EQ.IL) GOTO 30
      II=II+1
      EM(II,K)=F(I,K)-F(IL,K)
30    CONTINUE
      DO 50 I=1,N
      F0(I)=0.0
      DO 50 K=1,M
50    F0(I)=F0(I)-F(IL,K)*EM(I,K)
C---- ELEMENTS OF THE MATRIX GAMMA,G
      DO 70 I=1,N
      DO 70 J=1,N
      GG(I,J)=0.0
      DO 70 K=1,M
70    GG(I,J)=GG(I,J)+EM(I,K)*EM(J,K)
      CALL MATIN
      DO 80 I=1,N
      E(I)=0.0
      DO 80 J=1,N
80    E(I)=E(I)+GINV(I,J)*F0(J)
C---- DEFINE THE SCALING MATRIX A
      II=0
      DO 101 I=1,NP1
      IF(I.EQ.IL) GOTO 101
      II=II+1
      DO 100 J=1,N
      A(II,J)=X(I,J)-X(IL,J)
100   CONTINUE
101   CONTINUE
C---- DETERMINE DEL X
      DO 110 I=1,N
      DELX(I)=0.0
      DO 110 J=1,N
110   DELX(I)=DELX(I)+A(J,I)*E(J)
      DO 120 J=1,N
120   XF(J)=X(IL,J)+DELX(J)
      INDEX=N+2
      CALL FVAL
      IF(Y(IL).LT.YVAL) GOTO 140
      TEMP=ABS(1-SOLD/YVAL)
      IF(TEMP.EQ.1) GOTO 150
      IF(TEMP.LE.EPSI) GOTO 150
      SOLD=YVAL
      DO 130 J=1,N
130   X(IL,J)=XF(J)
      NP2=N+2
      DO 135 K=1,M
135   F(IL,K)=F(NP2,K)
      IFLAG=2
      IQ=(3*N)/2
      GOTO 160
140   IFLAG=2
      IQ=3*N
      GOTO 160
150   IFLAG=1
      DO 155 J=1,N
155   X(IL,J)=XF(J)
      Y(IL)=YVAL
160   RETURN
      END
C----------------------------------------------------------------------
      SUBROUTINE  INDEXD
      COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
      COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
      COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
      COMMON /NLC/ GA(120,5),NN
	COMMON /NLCOUT/ FF(120),PARS(10),BPARS(10)
      SUM=0.0
      DO 200 I=1,M
200   SUM=SUM+V(I)
      XM=M
      YBAR=SUM/XM
      SST=0.0
      DO 240 I=1,M
240   SST=SST+(V(I)-YBAR)**2
      SSR=0.0
      DO 280 I=1,M
      FF(I)=0.0
      DO 260  J=1,NT
260   FF(I)=BB(J)*GA(I,J)+FF(I)
280   SSR=SSR+(FF(I)-V(I))**2
      XINDX=1-SSR/SST
      SIGMAR=SQRT(SSR/XM)
      DO 300 I=1,M
      DIFF=FF(I)-V(I)
      IF(V(I).EQ.0.) GO TO 295
      DIFF = DIFF*100./V(I)
      GO TO 300
295   DIFF=0.
300   CONTINUE
C
C----  WRITE(1) (FF(I),I=1,M)
C----  WRITE(1) (V(I),I=1,M)
      RETURN
      END
C---------------------------------------------------------------------------
      SUBROUTINE FVAL
      COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
      COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
      COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
      COMMON /NLC/ GA(120,5),NN
      DIMENSION GTGA(11,11),GT(5,120),GGG(5,120),B(5)
      DIMENSION G(120,5),A(11),TR(5),XP(11)
      EQUIVALENCE (GG(1,1),GTGA(1,1)),(BB(1),B(1)),(XF(1),A(1)),
     *(G(1,1),GA(1,1))
      DO 200 I=1,M
      DO 100 J=1,NN
100   XP(J)=YD(I,J)
C
C---- LOCATION OF TRANSFORMS
      CALL TRANS(TR,A,XP)
C
      DO 110 J=1,NT
110   GA(I,J)=TR(J)
200   CONTINUE
      DO 230 J=1,NT
      DO 230 I=1,M
230   GT(J,I)=GA(I,J)
      DO 280 K=1,NT
      DO 280 I=1,NT
      GTGA(K,I)=0.0
      DO 280 J=1,M
280   GTGA(K,I)=GTGA(K,I)+GT(K,J)*GA(J,I)
      HOLD=N
      N=NT
      CALL MATIN
      N=HOLD
      DO 350 K=1,NT
      DO 350 I=1,M
      GGG(K,I)=0.0
      DO 350 J=1,NT
350   GGG(K,I)=GGG(K,I)+GINV(K,J)*GT(J,I)
      DO 400 K=1,NT
      B(K)=0.0
      DO 400 J=1,M
400   B(K)=B(K)+GGG(K,J)*V(J)
      YVAL=0.0
      DO 460 I=1,M
      FF=0.0
      DO 240 J=1,NT
240   FF=B(J)*GA(I,J)+FF
      F(INDEX,I)=V(I)-FF
460   YVAL=(V(I)-FF)**2+YVAL
      RETURN
      END