aboutsummaryrefslogtreecommitdiff
path: root/noao/onedspec/splot/deblend.x
blob: d43a9d520ea92a79636c0249a356e284ac26a7cb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
include	<math.h>
include	<mach.h>

# Profile types.
define	GAUSS		1	# Gaussian profile
define	LORENTZ		2	# Lorentzian profile
define	VOIGT		3	# Voigt profile

# Elements of fit array.
define	BKG		1	# Background
define	POS		2	# Position
define	INT		3	# Intensity
define	GAU		4	# Gaussian FWHM
define	LOR		5	# Lorentzian FWHM

# Type of constraints.
define	FIXED		1	# Fixed parameter
define	SINGLE		2	# Fit a single value for all lines
define	INDEP		3	# Fit independent values for all lines


# DOFIT -- Fit line profiles.  This is an interface to DOFIT1
# which puts parameters into the required form and vice-versa.
# It also implements a constrained approach to the solution.

procedure dofit (fit, x, y, s, npts, dx, nsub, y1, dy,
    xp, yp, gp, lp, tp, np, chisq)

int	fit[5]		# Fit constraints
real	x[npts]		# X data
real	y[npts]		# Y data
real	s[npts]		# Sigma data
int	npts		# Number of points
real	dx		# Pixel size
int	nsub		# Number of subpixels
real	y1		# Continuum offset
real	dy		# Continuum slope
real	xp[np]		# Profile positions
real	yp[np]		# Profile intensities
real	gp[np]		# Profile Gaussian FWHM
real	lp[np]		# Profile Lorentzian FWHM
int	tp[np]		# Profile type	
int	np		# Number of profiles
real	chisq		# Chi squared

int	i, j, fit1[5]
pointer	sp, a, b
errchk	dofit1

begin
	call smark (sp)
	call salloc (a, 8 + 5 * np, TY_REAL)

	# Convert positions and widths relative to first component.
	Memr[a] = dx
	Memr[a+1] = nsub
	Memr[a+2] = y1
	Memr[a+3] = dy
	Memr[a+4] = yp[1]
	Memr[a+5] = xp[1]
	Memr[a+6] = gp[1]
	Memr[a+7] = lp[1]
	do i = 1, np {
	    b = a + 5 * i + 3
	    Memr[b]   = yp[i] / Memr[a+4]
	    Memr[b+1] = xp[i] - Memr[a+5]
	    switch (tp[i]) {
	    case GAUSS:
		if (Memr[a+6] == 0.)
		    Memr[a+6] = gp[i]
		Memr[b+2] = gp[i] / Memr[a+6]
	    case LORENTZ:
		if (Memr[a+7] == 0.)
		    Memr[a+7] = lp[i]
		Memr[b+3] = lp[i] / Memr[a+7]
	    case VOIGT:
		if (Memr[a+6] == 0.)
		    Memr[a+6] = gp[i]
		Memr[b+2] = gp[i] / Memr[a+6]
		if (Memr[a+7] == 0.)
		    Memr[a+7] = lp[i]
		Memr[b+3] = lp[i] / Memr[a+7]
	    }
	    Memr[b+4] = tp[i]
	}

	# Do fit.
	fit1[INT] = fit[INT]
	do i = 1, fit[BKG] {
	    fit1[BKG] = i
	    fit1[GAU] = min (SINGLE, fit[GAU])
	    fit1[LOR] = min (SINGLE, fit[LOR])
	    do j = FIXED, fit[POS] {
		fit1[POS] = j
		if (np > 1 || j != INDEP)
		    call dofit1 (fit1, x, y, s, npts, Memr[a], np, chisq)
	    }
	    if (np > 1 && (fit[GAU] == INDEP || fit[LOR] == INDEP)) {
		fit1[GAU] = fit[GAU]
		fit1[LOR] = fit[LOR]
		call dofit1 (fit1, x, y, s, npts, Memr[a], np, chisq)
	    }
	}

	y1 = Memr[a+2]
	dy = Memr[a+3]
	do i = 1, np {
	    b = a + 5 * i + 3
	    yp[i] = Memr[b] * Memr[a+4]
	    xp[i] = Memr[b+1] + Memr[a+5]
	    switch (tp[i]) {
	    case GAUSS:
		gp[i] = abs (Memr[b+2] * Memr[a+6])
	    case LORENTZ:
		lp[i] = abs (Memr[b+3] * Memr[a+7])
	    case VOIGT:
		gp[i] = abs (Memr[b+2] * Memr[a+6])
		lp[i] = abs (Memr[b+3] * Memr[a+7])
	    }
	}

	call sfree (sp)
end


# DOREFIT -- Refit line profiles.  This assumes the input is very close
# to the final solution and minimizes the number of calls to the
# fitting routines.  This is intended for efficient use in the
# in computing bootstrap error estimates.

procedure dorefit (fit, x, y, s, npts, dx, nsub, y1, dy,
    xp, yp, gp, lp, tp, np, chisq)

int	fit[5]		# Fit constraints
real	x[npts]		# X data
real	y[npts]		# Y data
real	s[npts]		# Sigma data
int	npts		# Number of points
real	dx		# Pixel size
int	nsub		# Number of subpixels
real	y1		# Continuum offset
real	dy		# Continuum slope
real	xp[np]		# Profile positions
real	yp[np]		# Profile intensities
real	gp[np]		# Profile Gaussian FWHM
real	lp[np]		# Profile Lorentzian FWHM
int	tp[np]		# Profile type	
int	np		# Number of profiles
real	chisq		# Chi squared

int	i
pointer	sp, a, b
errchk	dofit1

begin
	call smark (sp)
	call salloc (a, 8 + 5 * np, TY_REAL)

	# Convert positions and widths relative to first component.
	Memr[a] = dx
	Memr[a+1] = nsub
	Memr[a+2] = y1
	Memr[a+3] = dy
	Memr[a+4] = yp[1]
	Memr[a+5] = xp[1]
	Memr[a+6] = gp[1]
	Memr[a+7] = lp[1]
	do i = 1, np {
	    b = a + 5 * i + 3
	    Memr[b]   = yp[i] / Memr[a+4]
	    Memr[b+1] = xp[i] - Memr[a+5]
	    switch (tp[i]) {
	    case GAUSS:
		if (Memr[a+6] == 0.)
		    Memr[a+6] = gp[i]
		Memr[b+2] = gp[i] / Memr[a+6]
	    case LORENTZ:
		if (Memr[a+7] == 0.)
		    Memr[a+7] = lp[i]
		Memr[b+3] = lp[i] / Memr[a+7]
	    case VOIGT:
		if (Memr[a+6] == 0.)
		    Memr[a+6] = gp[i]
		Memr[b+2] = gp[i] / Memr[a+6]
		if (Memr[a+7] == 0.)
		    Memr[a+7] = lp[i]
		Memr[b+3] = lp[i] / Memr[a+7]
	    }
	    Memr[b+4] = tp[i]
	}

	# Do fit.
	call dofit1 (fit, x, y, s, npts, Memr[a], np, chisq)

	y1 = Memr[a+2]
	dy = Memr[a+3]
	do i = 1, np {
	    b = a + 5 * i + 3
	    yp[i] = Memr[b] * Memr[a+4]
	    xp[i] = Memr[b+1] + Memr[a+5]
	    switch (tp[i]) {
	    case GAUSS:
		gp[i] = abs (Memr[b+2] * Memr[a+6])
	    case LORENTZ:
		lp[i] = abs (Memr[b+3] * Memr[a+7])
	    case VOIGT:
		gp[i] = abs (Memr[b+2] * Memr[a+6])
		lp[i] = abs (Memr[b+3] * Memr[a+7])
	    }
	}

	call sfree (sp)
end


# MODEL -- Compute model.

real procedure model (x, dx, nsub, xp, yp, gp, lp, tp, np)

real	x		# X value to be evaluated
real	dx		# Pixel width
int	nsub		# Number of subpixels
real	xp[np]		# Profile positions
real	yp[np]		# Profile intensities
real	gp[np]		# Profile Gaussian FWHM
real	lp[np]		# Profile Lorentzian FWHM
int	tp[np]		# Profile type	
int	np		# Number of profiles

int	i, j
real	delta, x1, y, arg1, arg2, v, v0, u

begin
	delta = dx / nsub
	x1 = x - (dx + delta) / 2
	y = 0.
	do j = 1, nsub {
	    x1 = x1 + delta
	    do i = 1, np {
		switch (tp[i]) {
		case GAUSS:
		    arg1 = 1.66511 * abs ((x1 - xp[i]) / gp[i])
		    if (arg1 < 5.)
			y = y + yp[i] * exp (-arg1**2)
		case LORENTZ:
		    arg2 = abs ((x1 - xp[i]) / (lp[i] / 2))
		    y = y + yp[i] / (1 + arg2**2)
		case VOIGT:
		    arg1 = 1.66511 * (x1 - xp[i]) / gp[i]
		    arg2 = 0.832555 * lp[i] / gp[i]
		    call voigt (0., arg2, v0, u)
		    call voigt (arg1, arg2, v, u)
		    y = y + yp[i] * v / v0
		}
	    }
	}
	y = y / nsub
	return (y)
end


# DERIVS -- Compute model and derivatives for MR_SOLVE procedure.
# This could be optimized more for the Voigt profile by reversing
# the do loops since v0 need only be computed once per line.

procedure derivs (x, a, y, dyda, na)

real	x		# X value to be evaluated
real	a[na]		# Parameters
real	y		# Function value
real	dyda[na]	# Derivatives
int	na		# Number of parameters

int	i, j, nsub
real	dx, dx1, delta, x1, wg, wl, arg1, arg2, I0, dI, c, u, v, v0

begin
	dx = a[1]
	nsub = a[2]
	delta = dx / nsub
	dx1 = .1 * delta
	x1 = x - (dx + delta) / 2
	y = 0.
	do i = 1, na
	   dyda[i] = 0.
	do j = 1, nsub {
	    x1 = x1 + delta
	    y = y + a[3] + a[4] * x1
	    dyda[3] = dyda[3] + 1.
	    dyda[4] = dyda[4] + x1
	    do i = 9, na, 5 {
		switch (a[i+4]) {
		case GAUSS:
		    I0 = a[5] * a[i]
		    wg = a[7] * a[i+2]
		    arg1 = 1.66511 * (x1 - a[6] - a[i+1]) / wg
		    if (abs (arg1) < 5.) {
			dI = exp (-arg1**2)
			c = I0 * dI * arg1
			y = y + I0 * dI
			dyda[5] = dyda[5] + a[i] * dI
			dyda[6] = dyda[6] + c / wg
			dyda[7] = dyda[7] + c * arg1 / a[7]
			dyda[i] = dyda[i] + a[5] * dI
			dyda[i+1] = dyda[i+1] + c / wg
			dyda[i+2] = dyda[i+2] + c * arg1 / a[i+2]
		    }
		case LORENTZ:
		    I0 = a[5] * a[i]
		    wl = (a[8] * a[i+3] / 2)
		    arg2 = (x1 - a[6] - a[i+1]) / wl
		    dI = 1 / (1 + arg2**2)
		    c = 2 * I0 * dI * dI * arg2
		    y = y + I0 * dI
		    dyda[5] = dyda[5] + a[i] * dI
		    dyda[6] = dyda[6] + c / wl
		    dyda[8] = dyda[8] + c * arg2 / a[8]
		    dyda[i] = dyda[i] + a[5] * dI
		    dyda[i+1] = dyda[i+1] + c / wl
		    dyda[i+3] = dyda[i+3] + c * arg2 / a[i+3]
		case VOIGT:
		    a[7] = max (dx1, abs(a[7]))
		    a[8] = max (dx1, abs(a[8]))
		    a[i+2] = max (1E-6, abs(a[i+2]))
		    a[i+3] = max (1E-6, abs(a[i+3]))

		    I0 = a[5] * a[i]
		    wg = a[7] * a[i+2]
		    wl = a[8] * a[i+3]
		    arg1 = 1.66511 * (x1 - a[6] - a[i+1]) / wg
		    arg2 = 0.832555 * wl / wg
		    call voigt (0., arg2, v0, u)
		    call voigt (arg1, arg2, v, u)
		    v = v / v0; u = u / v0
		    dI = (1 - v) / (v0 * SQRTOFPI)
		    c = 2 * I0 * arg2
		    y = y + I0 * v
		    dyda[5] = dyda[5] + a[i] * v
		    dyda[6] = dyda[6] + 2 * c * (arg1 * v - arg2 * u) / wl
		    dyda[7] = dyda[7] +
			c * (dI + arg1 * (arg1 / arg2 * v - 2 * u)) / a[7]
		    dyda[8] = dyda[8] + c * (arg1 * u - dI) / a[8]
		    dyda[i] = dyda[i] + a[5] * v
		    dyda[i+1] = dyda[i+1] + 2 * c * (arg1 * v - arg2 * u) / wl
		    dyda[i+2] = dyda[i+2] +
			c * (dI + arg1 * (arg1 / arg2 * v - 2 * u)) / a[i+2]
		    dyda[i+3] = dyda[i+3] + c * (arg1 * u - dI) / a[i+3]
		}
	    }
	}
	y = y / nsub
	do i = 1, na
	   dyda[i] = dyda[i] / nsub
end


# DOFIT1 -- Perform nonlinear iterative fit for the specified parameters.
# This uses the Levenberg-Marquardt method from NUMERICAL RECIPES.

procedure dofit1 (fit, x, y, s, npts, a, nlines, chisq)

int	fit[5]		# Fit constraints
real	x[npts]		# X data
real	y[npts]		# Y data
real	s[npts]		# Sigma data
int	npts		# Number of points
real	a[ARB]		# Fitting parameters
int	nlines		# Number of lines
real	chisq		# Chi squared

int	i, np, nfit
real	mr, chi2
pointer	sp, flags, ptr
errchk	mr_solve

begin
	# Number of terms is 5 for each line plus common background, center,
	# intensity and widths.  Also the pixel size and number of subpixels.

	np = 5 * nlines + 8

	call smark (sp)
	call salloc (flags, np, TY_INT)
	ptr = flags

	# Background.
	switch (fit[BKG]) {
	case SINGLE:
	    Memi[ptr] = 3
	    Memi[ptr+1] = 4
	    ptr = ptr + 2
	}

	# Peaks.
	switch (fit[INT]) {
	case SINGLE:
	    Memi[ptr] = 5
	    ptr = ptr + 1
	case INDEP:
	    do i = 1, nlines {
		Memi[ptr] = 5 * i + 4
		ptr = ptr + 1
	    }
	}

	# Positions.
	switch (fit[POS]) {
	case SINGLE:
	    Memi[ptr] = 6
	    ptr = ptr + 1
	case INDEP:
	    do i = 1, nlines {
		Memi[ptr] = 5 * i + 5
		ptr = ptr + 1
	    }
	}

	# Gaussian FWHM.
	switch (fit[GAU]) {
	case SINGLE:
	    Memi[ptr] = 7
	    ptr = ptr + 1
	case INDEP:
	    do i = 1, nlines {
		Memi[ptr] = 5 * i + 6
		ptr = ptr + 1
	    }
	}

	# Lorentzian FWHM.
	switch (fit[LOR]) {
	case SINGLE:
	    Memi[ptr] = 8
	    ptr = ptr + 1
	case INDEP:
	    do i = 1, nlines {
		Memi[ptr] = 5 * i + 7
		ptr = ptr + 1
	    }
	}

	nfit = ptr - flags
	mr = -1.
	i = 0
	chi2 = MAX_REAL
	repeat {
	    call mr_solve (x, y, s, npts, a, Memi[flags], np, nfit, mr, chisq)
	    if (chi2 - chisq > 0.0001)
		i = 0
	    else
		i = i + 1
	    chi2 = chisq
	} until (i == 5)

	mr = 0.
	call mr_solve (x, y, s, npts, a, Memi[flags], np, nfit, mr, chisq)

	call sfree (sp)
end


# MR_SOLVE -- Levenberg-Marquardt nonlinear chi square minimization.
#
# Use the Levenberg-Marquardt method to minimize the chi squared of a set
# of paraemters.  The parameters being fit are indexed by the flag array.
# To initialize the Marquardt parameter, MR, is less than zero.  After that
# the parameter is adjusted as needed.  To finish set the parameter to zero
# to free memory.  This procedure requires a subroutine, DERIVS, which
# takes the derivatives of the function being fit with respect to the
# parameters.  There is no limitation on the number of parameters or
# data points.  For a description of the method see NUMERICAL RECIPES
# by Press, Flannery, Teukolsky, and Vetterling, p523.

procedure mr_solve (x, y, s, npts, params, flags, np, nfit, mr, chisq)

real	x[npts]			# X data array
real	y[npts]			# Y data array
real	s[npts]			# Sigma data array
int	npts			# Number of data points
real	params[np]		# Parameter array
int	flags[np]		# Flag array indexing parameters to fit
int	np			# Number of parameters
int	nfit			# Number of parameters to fit
real	mr			# MR parameter
real	chisq			# Chi square of fit

int	i
real	chisq1
pointer	new, a1, a2, delta1, delta2

errchk	mr_invert

begin
	# Allocate memory and initialize.
	if (mr < 0.) {
	    call mfree (new, TY_REAL)
	    call mfree (a1, TY_REAL)
	    call mfree (a2, TY_REAL)
	    call mfree (delta1, TY_REAL)
	    call mfree (delta2, TY_REAL)

	    call malloc (new, np, TY_REAL)
	    call malloc (a1, nfit*nfit, TY_REAL)
	    call malloc (a2, nfit*nfit, TY_REAL)
	    call malloc (delta1, nfit, TY_REAL)
	    call malloc (delta2, nfit, TY_REAL)

	    call amovr (params, Memr[new], np)
	    call mr_eval (x, y, s, npts, Memr[new], flags, np, Memr[a2],
	        Memr[delta2], nfit, chisq)
	    mr = 0.001
	}

	# Restore last good fit and apply the Marquardt parameter.
	call amovr (Memr[a2], Memr[a1], nfit * nfit)
	call amovr (Memr[delta2], Memr[delta1], nfit)
	do i = 1, nfit
	    Memr[a1+(i-1)*(nfit+1)] = Memr[a2+(i-1)*(nfit+1)] * (1. + mr)

	# Matrix solution.
	call mr_invert (Memr[a1], Memr[delta1], nfit)

	# Compute the new values and curvature matrix.
	do i = 1, nfit
	    Memr[new+flags[i]-1] = params[flags[i]] + Memr[delta1+i-1]
	call mr_eval (x, y, s, npts, Memr[new], flags, np, Memr[a1],
	    Memr[delta1], nfit, chisq1)

	# Check if chisq has improved.
	if (chisq1 < chisq) {
	    mr = max (EPSILONR, 0.1 * mr)
	    chisq = chisq1
	    call amovr (Memr[a1], Memr[a2], nfit * nfit)
	    call amovr (Memr[delta1], Memr[delta2], nfit)
	    call amovr (Memr[new], params, np)
	} else
	    mr = 10. * mr

	if (mr == 0.) {
	    call mfree (new, TY_REAL)
	    call mfree (a1,  TY_REAL)
	    call mfree (a2,  TY_REAL)
	    call mfree (delta1, TY_REAL)
	    call mfree (delta2, TY_REAL)
	}
end


# MR_EVAL -- Evaluate curvature matrix.  This calls procedure DERIVS.

procedure mr_eval (x, y, s, npts, params, flags, np, a, delta, nfit, chisq)

real	x[npts]			# X data array
real	y[npts]			# Y data array
real	s[npts]			# Sigma data array
int	npts			# Number of data points
real	params[np]		# Parameter array
int	flags[np]		# Flag array indexing parameters to fit
int	np			# Number of parameters
real	a[nfit,nfit]		# Curvature matrix
real	delta[nfit]		# Delta array
int	nfit			# Number of parameters to fit
real	chisq			# Chi square of fit

int	i, j, k
real	ymod, dy, dydpj, dydpk, sig2i
pointer	sp, dydp

begin
	call smark (sp)
	call salloc (dydp, np, TY_REAL)

	do j = 1, nfit {
	   do k = 1, j
	       a[j,k] = 0.
	    delta[j] = 0.
	}

	chisq = 0.
	do i = 1, npts {
	    call derivs (x[i], params, ymod, Memr[dydp], np)
	    if (IS_INDEF(ymod))
		next
	    sig2i = 1. / (s[i] * s[i])
	    dy = y[i] - ymod
	    do j = 1, nfit {
		dydpj = Memr[dydp+flags[j]-1] * sig2i
		delta[j] = delta[j] + dy * dydpj
		do k = 1, j {
		    dydpk = Memr[dydp+flags[k]-1]
		    a[j,k] = a[j,k] + dydpj * dydpk
		}
	    }
	    chisq = chisq + dy * dy * sig2i
	}

	do j = 2, nfit
	    do k = 1, j-1
		a[k,j] = a[j,k]

	call sfree (sp)
end
	    

# MR_INVERT -- Solve a set of linear equations using Householder transforms.

procedure mr_invert (a, b, n)

real	a[n,n]		# Input matrix and returned inverse
real	b[n]		# Input RHS vector and returned solution
int	n		# Dimension of input matrices

int	krank
real	rnorm
pointer	sp, h, g, ip

begin
	call smark (sp)
	call salloc (h, n, TY_REAL)
	call salloc (g, n, TY_REAL)
	call salloc (ip, n, TY_INT)

	call hfti (a, n, n, n, b, n, 1, 1E-10, krank, rnorm,
	    Memr[h], Memr[g], Memi[ip])

	call sfree (sp)
end