1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
include <gset.h>
# EQWIDTH_CP -- Equivalent width following algorithm provided by
# Caty Pilachowski. This assumes a Gaussian line profile
# and fits to the specified core level, the width at the
# specified flux level above the core, and the specified
# continuum. The line position is found by searching
# near the vertical cursor for the nearest minimum.
define LEFT 1 # Fit to left edge
define RIGHT 2 # Fit to right edge
define BOTH 3 # Fit to both edges
procedure eqwidth_cp (sh, gfd, center, cont, ylevel, y, n, key, fd1, fd2,
xg, yg, sg, lg, pg, ng)
pointer sh
int gfd
real center, cont, ylevel
real y[n]
int n
int key
int fd1, fd2
pointer xg, yg, sg, lg, pg # Pointers to fit parameters
int ng # Number of components
int i, i1, i2, isrch, icore, edge
double xleft, xright, rcore, rinter, yl, gfwhm, lfwhm, flux, eqw, w, w1, w2
double xpara[3], ypara[3], coefs[3], xcore, ycore
double shdr_lw(), shdr_wl()
# Initialize reasonable values
# isrch -- nr of pixels on either side of cursor to search for min
data isrch /3/
begin
# Check continuum.
if (cont <= 0.) {
call eprintf ("Continuum cannot be less than zero.\n")
return
}
# Determine which edges of the line to use.
switch (key) {
case 'a', 'l':
edge = LEFT
case 'b', 'r':
edge = RIGHT
default:
edge = BOTH
}
# Search for local minimum or maximum
icore = max (1, min (n, nint (shdr_wl (sh, double(center)))))
i1 = max (1, icore-isrch)
i2 = min (n, icore+isrch)
# If half lines is selected, restrict the search
if (edge == LEFT)
i2 = max (i2-2, icore+1)
if (edge == RIGHT)
i1 = min (i1+2, icore-1)
# Search for core.
# Someday it may be desirable to use parabolic interpolation
# to locate an estimated minimum or maximum for the region
do i = i1, i2 {
if (abs (y[i] - cont) > abs (y[icore] - cont))
icore = i
}
# Fit parabola to three points around minimum pixel
xpara[1] = icore - 1
xpara[2] = icore
xpara[3] = icore + 1
ypara[1] = y[icore-1]
ypara[2] = y[icore]
ypara[3] = y[icore+1]
call para (xpara, ypara, coefs)
# Compute pixel value at minimum
xcore = -coefs[2] / 2.0 / coefs[3]
ycore = coefs[1] + coefs[2] * xcore + coefs[3] * xcore**2
# Locate left and right line edges. If the ylevel is INDEF then use
# the half flux point.
if (IS_INDEF (ylevel))
yl = (cont + ycore) / 2.
else
yl = ylevel
rcore = abs (ycore - cont)
rinter = abs (yl - cont)
if (rcore <= rinter) {
call eprintf (
"Y cursor must be between the continuum and the line core\n")
return
}
# Bound flux level of interest
if ((edge == LEFT) || (edge == BOTH)) {
for (i=icore; i >= 1; i=i-1)
if (abs (y[i] - cont) < rinter)
break
if (i < 1) {
call eprintf ("Can't find left edge of line\n")
return
}
xleft = float (i) + (yl - y[i]) / (y[i+1] - y[i])
if (edge == LEFT)
xright = xcore + (xcore - xleft)
}
# Now bound the right side
if ((edge == RIGHT) || (edge == BOTH)) {
for (i=icore; i <= n; i=i+1)
if (abs (y[i] - cont) < rinter)
break
if (i > n) {
call eprintf ("Can't find right edge of line\n")
return
}
xright = float (i) - (yl - y[i]) / (y[i-1] - y[i])
if (edge == RIGHT)
xleft = xcore - (xright - xcore)
}
# Compute in wavelength
w = shdr_lw (sh, double(xcore))
w1 = shdr_lw (sh, double(xleft))
w2 = shdr_lw (sh, double(xright))
# Apply Gaussian model
gfwhm = 1.665109 * abs (w2 - w1) / 2. / sqrt (log (rcore/rinter))
lfwhm = 0.
rcore = ycore - cont
flux = 1.064467 * rcore * gfwhm
eqw = -flux / cont
call printf (
"center = %9.7g, eqw = %9.4g, gfwhm = %9.4g\n")
call pargd (w)
call pargd (eqw)
call pargd (gfwhm)
if (fd1 != NULL) {
call fprintf (fd1, " %9.7g %9.7g %9.6g %9.4g %9.6g %9.4g %9.4g\n")
call pargd (w)
call pargr (cont)
call pargd (flux)
call pargd (eqw)
call pargd (ycore - cont)
call pargd (gfwhm)
call pargd (lfwhm)
}
if (fd2 != NULL) {
call fprintf (fd2, " %9.7g %9.7g %9.6g %9.4g %9.6g %9.4g %9.4g\n")
call pargd (w)
call pargr (cont)
call pargd (flux)
call pargd (eqw)
call pargd (ycore - cont)
call pargd (gfwhm)
call pargd (lfwhm)
}
# Mark line computed
call gline (gfd, real(w), cont, real(w), real(ycore))
call gline (gfd, real(w1), real(yl), real(w2), real(yl))
w1 = w - 2 * gfwhm
w2 = cont + rcore * exp (-(1.665109*(w1-w)/gfwhm)**2)
call gseti (gfd, G_PLTYPE, 2)
call gseti (gfd, G_PLCOLOR, 2)
call gamove (gfd, real(w1), real(w2))
for (; w1 <= w+2*gfwhm; w1=w1+0.05*gfwhm) {
w2 = cont + rcore * exp (-(1.665109*(w1-w)/gfwhm)**2)
call gadraw (gfd, real(w1), real(w2))
}
call gseti (gfd, G_PLTYPE, 1)
call gseti (gfd, G_PLCOLOR, 1)
# Save fit parameters
if (ng == 0) {
call malloc (xg, 1, TY_REAL)
call malloc (yg, 1, TY_REAL)
call malloc (sg, 1, TY_REAL)
call malloc (lg, 1, TY_REAL)
call malloc (pg, 1, TY_INT)
} else if (ng != 1) {
call realloc (xg, 1, TY_REAL)
call realloc (yg, 1, TY_REAL)
call realloc (sg, 1, TY_REAL)
call realloc (lg, 1, TY_REAL)
call realloc (pg, 1, TY_INT)
}
Memr[xg] = w
Memr[yg] = rcore
Memr[sg] = gfwhm
Memr[lg] = lfwhm
Memi[pg] = 1
ng = 1
end
# PARA -- Fit a parabola to three points
procedure para (x, y, c)
double x[3], y[3], c[3]
double x12, x13, x23, x213, x223, y13, y23
begin
x12 = x[1] - x[2]
x13 = x[1] - x[3]
x23 = x[2] - x[3]
if (x12 == 0. || x13 == 0. || x23 == 0.)
call error (1, "X points are not distinct")
# Compute relative to an origin at x[3]
x213 = x13 * x13
x223 = x23 * x23
y13 = y[1] - y[3]
y23 = y[2] - y[3]
c[3] = (y13 - y23 * x13 / x23) / (x213 - x223 * x13 / x23)
c[2] = (y23 - c[3] * x223) / x23
c[1] = y[3]
# Compute relative to an origin at 0.
c[1] = c[1] - x[3] * (c[2] - c[3] * x[3])
c[2] = c[2] - 2 * c[3] * x[3]
end
|