1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
|
include <error.h>
include <mach.h>
include <gset.h>
include "rvpackage.h"
include "rvflags.h"
# DEBLEND -- Deblend up to 4 lines in a spectral region.
procedure deblend (rv, gp, x1, x2, dx, wx1, wy1, pix, ans, nans)
pointer rv #I RV struct pointer
pointer gp #I GIO file descriptor
real x1, x2, dx #I Coordinate scale
real wx1, wy1 #I Cursor position
real pix[ARB] #I Spectrum data
char ans[2*SZ_LINE,4] #O Answer strings
int nans #O Number of answer strings
int i, j, i1, npts, nlines, maxlines, wc, key, op, stat
double vobs, vhelio, verr
real w, wxc, wyc, wx, wy, wx2, wy2, a[14], waves[4]
real slope, height, flux, cont, sigma, eqw, scale, chisq
real serr, shift, fwhm
bool fit
pointer sp, cmd, x, y, anti
int scan(), clgcur(), clgkey(), rv_rvcorrect()
errchk dofit
include "fitcom.com"
define done_ 99
define HELP "noao$lib/scr/deblend.key"
define OP "Option (a=0p1s, b=1p1s, c=np1s, d=0pns, e=1pns, f=npns, q=quit):"
define SQ2PI 2.5066283
begin
call smark (sp)
call salloc (cmd, SZ_FNAME, TY_CHAR)
# Input cursor is first continuum point now get second continuum point.
call printf ("d again:")
if (clgcur ("cursor", wx2, wy2, wc, key, Memc[cmd], SZ_FNAME) == EOF) {
call sfree (sp)
return
}
call gctran (gp, wx2, wy2, wx2, wy2, wc, 2)
if (RV_FITDONE(rv) == YES) {
call rv_erase_fit (rv, false)
RV_FITDONE(rv) = NO
IS_DBLSTAR(rv) = NO
}
# Set pixel indices and determine number of points to fit.
call fixx (wx1, wx2, wy1, wy2, x1, x2)
call pixind (x1, dx, wx1, i1)
call pixind (x1, dx, wx2, j)
npts = j - i1 + 1
RV_IEND(rv) = j
RV_ISTART(rv) = i1
if (npts < 3) {
call rv_errmsg ("At least 3 points are required\n")
call sfree (sp)
return
}
# Allocate space for the points to be fit.
call salloc (x, npts, TY_REAL)
call salloc (y, npts, TY_REAL)
# Subtract the continuum and scale the data.
wxc = wx1
wyc = wy1
slope = (wy2-wy1) / (wx2-wx1)
scale = 0.
do i = 1, npts {
w = x1 + (i1+i-2) * dx
Memr[y+i-1] = pix[i1+i-1] - (wyc + slope * (w-wxc))
scale = max (scale, abs (Memr[y+i-1]))
Memr[x+i-1] = w
}
call adivkr (Memr[y], scale, Memr[y], npts)
# Select the lines to be fit. If no lines return.
maxlines = 4
nlines = 0
call printf ("Lines ('m' to mark, 't' to type, 'q' to quit):")
while (clgcur ("cursor", wx, wy, wc, key, Memc[cmd], SZ_FNAME) != EOF) {
switch (key) {
case 'm':
call gctran (gp, wx, wy, wx, wy, wc, 2)
case 't':
if (RV_DCFLAG(rv) == -1) {
call printf ("shift: ")
call flush (STDOUT)
if (scan() != EOF)
call gargr (wx)
} else {
call printf ("velocity: ")
call flush (STDOUT)
if (scan() != EOF)
call gargr (wx)
wx = wx / RV_DELTAV(rv)
}
call printf ("Lines ('m' to mark, 't' to type, 'q' to quit):")
case 'q':
call printf ("\n")
break
case 'I':
call fatal (0, "Interrupt")
default:
call printf (
"Lines ('m' to mark, 't' to type, 'q' to quit):")
next
}
for (i = 1; i <= nlines && wx != waves[i]; i = i + 1)
;
if (i > nlines) {
nlines = nlines + 1
waves[nlines] = wx
call gmark (gp, wx, wy, GM_VLINE, 4., 4.)
call gflush (gp)
}
if (nlines == maxlines) {
call printf ("\n")
break
}
}
if (nlines == 0)
goto done_
# Do fits.
fit = false
call printf (OP)
while (clgcur ("cursor", wx, wy, wc, op, Memc[cmd], SZ_FNAME) != EOF) {
switch (op) {
case '?':
call gpagefile (gp, HELP, "Rvxcor Deblending Options")
call printf (OP)
next
case 'a', 'b', 'c', 'd', 'e', 'f':
case 'q':
call printf ("\n")
break
case 'I':
call fatal (0, "Interrupt")
default:
call printf ("%s")
call pargstr (OP)
next
}
# Erase old deblended fit in case we've been here before. Fit is
# erased above from when we first entered.
if (IS_DBLSTAR(rv) == YES) {
call gseti (gp, G_PLTYPE, GL_CLEAR)
call rv_plt_deblend (rv, gp, NO)
call gseti (gp, G_PLTYPE, GL_SOLID)
}
# Save some variables for later plotting.
DBL_X1(rv) = wx1
DBL_X2(rv) = wx2
DBL_Y1(rv) = wy1
DBL_Y2(rv) = wy2
DBL_I1(rv) = i1
DBL_NFITP(rv) = npts
DBL_SCALE(rv) = scale
DBL_SLOPE(rv) = slope
# Convert line postions to relative to first line.
a[1] = waves[1]
a[2] = 0.25 * abs (Memr[x+npts-1] - Memr[x]) / nlines
do i = 1, nlines {
call pixind (x1, dx, waves[i], j)
a[3*i] = (pix[j] - (wyc + slope * (waves[i]-wxc))) / scale
a[3*i+1] = waves[i] - waves[1]
a[3*i+2] = 1.
}
switch (op) {
case 'a':
iferr {
call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
} then {
call erract (EA_WARN)
next
}
case 'b':
iferr {
call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq)
} then {
call erract (EA_WARN)
next
}
case 'c':
iferr {
call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('c', Memr[x], Memr[y], npts, a, nlines, chisq)
} then {
call erract (EA_WARN)
next
}
case 'd':
iferr {
call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('d', Memr[x], Memr[y], npts, a, nlines, chisq)
} then {
call erract (EA_WARN)
next
}
case 'e':
iferr {
call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('e', Memr[x], Memr[y], npts, a, nlines, chisq)
} then {
call erract (EA_WARN)
next
}
case 'f':
iferr {
call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('c', Memr[x], Memr[y], npts, a, nlines, chisq)
call dofit ('f', Memr[x], Memr[y], npts, a, nlines, chisq)
} then {
call erract (EA_WARN)
next
}
}
fit = true
RV_FITDONE(rv) = YES
DBL_NSHIFTS(rv) = nlines
call amovr (a, DBL_COEFFS(rv,1), 3*nlines+2)
# Update parameters in the fitting common for the output log
nfit = npts
nfitpars = 3*nlines+2
binshift = INDEFI
niter = 3
chisqr = INDEF
ccfvar = INDEF
mresid = INDEF
sresid = INDEF
# Compute model spectrum with continuum and plot.
IS_DBLSTAR(rv) = YES
call rv_plt_deblend (rv, gp, NO)
# Print computed values on status line.
i = 1
key = ''
repeat {
call flush (STDOUT)
switch (key) {
case '-':
i = i - 1
if (i < 1)
i = nlines
case '+':
i = i + 1
if (i > nlines)
i = 1
case 'q':
call printf ("\n")
break
}
height = scale * a[3*i]
w = a[1] + a[3*i+1]
sigma = abs (a[2]*a[3*i+2])
flux = sigma * height * SQ2PI
cont = wyc + slope * (w - wxc)
if (cont > 0.)
eqw = abs (flux) / cont
else
eqw = INDEF
if (key == 'r') {
call printf ("\nrms = %8.4g")
call pargr (scale * sqrt (chisq / npts))
} else if (key == 'I') {
call fatal (0, "Interrupt")
} else if (key == 'v') {
serr = 0.0
shift = w
stat = rv_rvcorrect (rv, shift, serr, vobs, vhelio, verr)
call printf (
"\n%d: shift = %8.4f Vo = %8.3f Vh = %8.3f fwhm = %6.4f")
call pargi (i)
call pargr (shift)
call pargd (vobs)
call pargd (vhelio)
call pargr (2.35482 * sigma * RV_DELTAV(rv))
} else {
call printf (
"\n%d: center = %8.6g, flux = %8.4g, eqw = %6.4g, fwhm = %6.4g")
call pargi (i)
call pargr (w)
call pargr (flux)
call pargr (eqw)
call pargr (2.35482 * sigma)
}
call printf (" (+,-,v,r,q):")
call flush (STDOUT)
} until (clgkey ("ukey", key, Memc[cmd], SZ_FNAME) == EOF)
# Log computed values
nans = nlines
do i = 1, nlines {
w = a[1] + a[3*i+1]
cont = wyc + slope * (w - wxc)
height = scale * a[3*i]
sigma = abs (a[2]*a[3*i+2])
flux = sigma * height * SQ2PI
if (cont > 0.)
eqw = abs (flux) / cont
else
eqw = INDEF
call sprintf (ans[1,i], 2*SZ_LINE,
" %9.7g %9.7g %9.6g %9.4g %9.6g %9.4g %9.4g\n")
call pargr (w)
call pargr (cont)
call pargr (flux)
call pargr (eqw)
call pargr (height)
call pargr (sigma)
call pargr (2.35482 * sigma)
# Now calculate and save the velocity information
serr = 0.0
if (RV_DCFLAG(rv) != -1) {
stat = rv_rvcorrect (rv, w, serr, vobs, vhelio, verr)
call salloc (anti, RV_CCFNPTS(rv), TY_REAL)
fwhm = 2.35482 * sigma
call rv_antisym (rv, w, height, fwhm, WRKPIXY(rv,1),
RV_CCFNPTS(rv), Memr[anti], ccfvar, verr, DBL_R(rv,i))
if (IS_INDEFD(vobs))
DBL_VOBS(rv,i) = INDEFR
else
DBL_VOBS(rv,i) = real (vobs)
if (IS_INDEFD(vhelio))
DBL_VHELIO(rv,i) = INDEFR
else
DBL_VHELIO(rv,i) = real (vhelio)
if (IS_INDEFD(verr))
DBL_VERR(rv,i) = INDEFR
else
DBL_VERR(rv,i) = real (verr)
DBL_FWHM(rv,i) = 2.35482 * sigma * RV_DELTAV(rv)
} else {
DBL_VOBS(rv,i) = INDEFR
DBL_VHELIO(rv,i) = INDEFR
DBL_VERR(rv,i) = INDEFR
DBL_FWHM(rv,i) = 2.35482 * sigma
}
DBL_HEIGHT(rv,i) = height
DBL_SHIFT(rv,i) = w
}
call printf (OP)
}
done_ call sfree (sp)
end
# SUBBLEND -- Subtract last fit.
procedure subblend (rv, gp, pix, x1, x2, dx, wx1, wy1)
pointer rv #I RV struct pointer
pointer gp #I Graphics descriptor
real pix[ARB] #I CCF array
real x1, x2, dx #I Coordinate scale
real wx1, wy1 #I Cursor position
int i, j, i1, wc, npts, key
real w, wx2, wy2
pointer sp, cmd
int clgcur()
real model()
begin
call smark (sp)
call salloc (cmd, SZ_FNAME, TY_CHAR)
# Subtract continuum subtracted curve from spectrum
if (RV_FITDONE(rv) == NO) {
call sfree (sp)
return
}
# Determine fit range
call printf ("- again:")
call flush (STDOUT)
if (clgcur ("cursor", wx2, wy2, wc, key, Memc[cmd], SZ_FNAME) == EOF) {
call sfree (sp)
return
}
call fixx (wx1, wx2, wy1, wy2, x1, x2)
call pixind (x1, dx, wx1, i1)
call pixind (x1, dx, wx2, j)
npts = j - i1 + 1
do i = 1, npts {
w = x1 + (i1+i-2) * dx
pix[i1+i-1] = pix[i1+i-1] - DBL_SCALE(rv) * model (w,
DBL_COEFFS(rv,1), 3*DBL_NSHIFTS(rv)+2)
}
# Plot subtracted curve
call gvline (gp, pix[i1], npts, wx1, wx2)
call gflush (gp)
RV_FITDONE(rv) = NO
call sfree (sp)
end
# DOFIT -- Perform nonlinear iterative fit for the specified parameters.
# This uses the Levenberg-Marquardt method from NUMERICAL RECIPES.
procedure dofit (key, x, y, npts, a, nlines, chisq)
int key #I Fitting option
real x[npts] #I X data
real y[npts] #I Y data
int npts #I Number of points
real a[ARB] #I Fitting parameters
int nlines #I Number of lines
real chisq #O Chi squared
int i, np, nfit
real mr, chi2
pointer sp, flags
errchk mr_solve
begin
# Number of terms is 3 for each line plus common center and sigma.
np = 3 * nlines + 2
call smark (sp)
call salloc (flags, np, TY_INT)
# Peaks are always fit.
switch (key) {
case 'a': # Solve one sigma.
nfit = 1 + nlines
Memi[flags] = 2
do i = 1, nlines
Memi[flags+i] = 3 * i
case 'b': # Solve one position and one sigma.
nfit = 2 + nlines
Memi[flags] = 1
Memi[flags+1] = 2
do i = 1, nlines
Memi[flags+1+i] = 3 * i
case 'c': # Solve independent positions and one sigma.
nfit = 1 + 2 * nlines
Memi[flags] = 2
do i = 1, nlines {
Memi[flags+2*i-1] = 3 * i
Memi[flags+2*i] = 3 * i + 1
}
case 'd': # Solve for sigmas.
nfit = 2 * nlines
do i = 1, nlines {
Memi[flags+2*i-2] = 3 * i
Memi[flags+2*i-1] = 3 * i + 2
}
case 'e': # Solve for one position and sigmas.
nfit = 1 + 2 * nlines
Memi[flags] = 1
do i = 1, nlines {
Memi[flags+2*i-1] = 3 * i
Memi[flags+2*i] = 3 * i + 2
}
case 'f': # Solve for positions and sigmas.
nfit = 3 * nlines
do i = 1, nfit
Memi[flags+i-1] = i + 2
}
mr = -1.
i = 0
chi2 = MAX_REAL
repeat {
call mr_solve (x, y, npts, a, Memi[flags], np, nfit, mr, chisq)
if (chi2 - chisq > 1.)
i = 0
else
i = i + 1
chi2 = chisq
} until (i == 3)
mr = 0.
call mr_solve (x, y, npts, a, Memi[flags], np, nfit, mr, chisq)
call sfree (sp)
end
# MODEL -- Compute model from fitted parameters.
#
# I(x) = I(i) exp {[(x - xc - dx(i)) / (sig sig(i))] ** 2 / 2.}
#
# where the parameters are xc, sig, I(i), dx(i), and sig(i) (i=1,nlines).
real procedure model (x, a, na)
real x #I X value to be evaluated
real a[na] #I Parameters
int na #I Number of parameters
int i
real y, arg
begin
y = 0.
do i = 3, na, 3 {
arg = (x - a[1] - a[i+1]) / (a[2] * a[i+2])
if (abs (arg) < 7.)
y = y + a[i] * exp (-arg**2 / 2.)
}
return (y)
end
# DERIVS -- Compute model and derivatives for MR_SOLVE procedure.
#
# I(x) = I(i) exp {[(x - xc - dx(i)) / (sig sig(i))] ** 2 / 2.}
#
# where the parameters are xc, sig, I(i), dx(i), and sig(i) (i=1,nlines).
procedure derivs (x, a, y, dyda, na)
real x #I X value to be evaluated
real a[na] #I Parameters
real y #O Function value
real dyda[na] #O Derivatives
int na #I Number of parameters
int i
real sig, arg, ex, fac
begin
y = 0.
dyda[1] = 0.
dyda[2] = 0.
do i = 3, na, 3 {
sig = a[2] * a[i+2]
arg = (x - a[1] - a[i+1]) / sig
if (abs (arg) < 7.)
ex = exp (-arg**2 / 2.)
else
ex = 0.
fac = a[i] * ex * arg
y = y + a[i] * ex
dyda[1] = dyda[1] + fac / sig
dyda[2] = dyda[2] + fac * arg / a[2]
dyda[i] = ex
dyda[i+1] = fac / sig
dyda[i+2] = fac * arg / a[i+2]
}
end
# MR_SOLVE -- Levenberg-Marquardt nonlinear chi square minimization.
#
# Use the Levenberg-Marquardt method to minimize the chi squared of a set
# of paraemters. The parameters being fit are indexed by the flag array.
# To initialize the Marquardt parameter, MR, is less than zero. After that
# the parameter is adjusted as needed. To finish set the parameter to zero
# to free memory. This procedure requires a subroutine, DERIVS, which
# takes the derivatives of the function being fit with respect to the
# parameters. There is no limitation on the number of parameters or
# data points. For a description of the method see NUMERICAL RECIPES
# by Press, Flannery, Teukolsky, and Vetterling, p523.
procedure mr_solve (x, y, npts, params, flags, np, nfit, mr, chisq)
real x[npts] #I X data array
real y[npts] #I Y data array
int npts #I Number of data points
real params[np] #U Parameter array
int flags[np] #I Flag array indexing parameters to fit
int np #I Number of parameters
int nfit #I Number of parameters to fit
real mr #O MR parameter
real chisq #O Chi square of fit
int i
real chisq1
pointer new, a1, a2, delta1, delta2
errchk mr_invert
begin
# Allocate memory and initialize.
if (mr < 0.) {
call mfree (new, TY_REAL)
call mfree (a1, TY_REAL)
call mfree (a2, TY_REAL)
call mfree (delta1, TY_REAL)
call mfree (delta2, TY_REAL)
call malloc (new, np, TY_REAL)
call malloc (a1, nfit*nfit, TY_REAL)
call malloc (a2, nfit*nfit, TY_REAL)
call malloc (delta1, nfit, TY_REAL)
call malloc (delta2, nfit, TY_REAL)
call amovr (params, Memr[new], np)
call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a2],
Memr[delta2], nfit, chisq)
mr = 0.001
}
# Restore last good fit and apply the Marquardt parameter.
call amovr (Memr[a2], Memr[a1], nfit * nfit)
call amovr (Memr[delta2], Memr[delta1], nfit)
do i = 1, nfit
Memr[a1+(i-1)*(nfit+1)] = Memr[a2+(i-1)*(nfit+1)] * (1. + mr)
# Matrix solution.
call mr_invert (Memr[a1], Memr[delta1], nfit)
# Compute the new values and curvature matrix.
do i = 1, nfit
Memr[new+flags[i]-1] = params[flags[i]] + Memr[delta1+i-1]
call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a1],
Memr[delta1], nfit, chisq1)
# Check if chisq has improved.
if (chisq1 < chisq) {
mr = 0.1 * mr
chisq = chisq1
call amovr (Memr[a1], Memr[a2], nfit * nfit)
call amovr (Memr[delta1], Memr[delta2], nfit)
call amovr (Memr[new], params, np)
} else
mr = 10. * mr
if (mr == 0.) {
call mfree (new, TY_REAL)
call mfree (a1, TY_REAL)
call mfree (a2, TY_REAL)
call mfree (delta1, TY_REAL)
call mfree (delta2, TY_REAL)
}
end
# MR_EVAL -- Evaluate curvature matrix. This calls procedure DERIVS.
procedure mr_eval (x, y, npts, params, flags, np, a, delta, nfit, chisq)
real x[npts] #I X data array
real y[npts] #I Y data array
int npts #I Number of data points
real params[np] #I Parameter array
int flags[np] #I Flag array indexing parameters to fit
int np #I Number of parameters
real a[nfit,nfit] #U Curvature matrix
real delta[nfit] #U Delta array
int nfit #I Number of parameters to fit
real chisq #U Chi square of fit
int i, j, k
real ymod, dy, dydpj, dydpk
pointer sp, dydp
begin
call smark (sp)
call salloc (dydp, np, TY_REAL)
do j = 1, nfit {
do k = 1, j
a[j,k] = 0.
delta[j] = 0.
}
chisq = 0.
do i = 1, npts {
call derivs (x[i], params, ymod, Memr[dydp], np)
dy = y[i] - ymod
do j = 1, nfit {
dydpj = Memr[dydp+flags[j]-1]
delta[j] = delta[j] + dy * dydpj
do k = 1, j {
dydpk = Memr[dydp+flags[k]-1]
a[j,k] = a[j,k] + dydpj * dydpk
}
}
chisq = chisq + dy * dy
}
do j = 2, nfit
do k = 1, j-1
a[k,j] = a[j,k]
call sfree (sp)
end
# MR_INVERT -- Solve a set of linear equations using Householder transforms.
procedure mr_invert (a, b, n)
real a[n,n] #I Input matrix and returned inverse
real b[n] #U Input RHS vector and returned solution
int n #I Dimension of input matrices
int krank
real rnorm
pointer sp, h, g, ip
begin
call smark (sp)
call salloc (h, n, TY_REAL)
call salloc (g, n, TY_REAL)
call salloc (ip, n, TY_INT)
call hfti (a, n, n, n, b, n, 1, 0.001, krank, rnorm,
Memr[h], Memr[g], Memi[ip])
call sfree (sp)
end
# FIXX - Check for bounds on x's.
procedure fixx (eqx1, eqx2, eqy1, eqy2, x1, x2)
real eqx1, eqx2, eqy1, eqy2, x1, x2
real temp
begin
if ((x1 - x2) * (eqx1 - eqx2) < 0.) {
temp = eqx2
eqx2 = eqx1
eqx1 = temp
temp = eqy2
eqy2 = eqy1
eqy1 = temp
}
eqx1 = max (min (x1, x2), min (max (x1, x2), eqx1))
eqx2 = max (min (x1, x2), min (max (x1, x2), eqx2))
end
# PIXIND -- Compute pixel index.
procedure pixind (x1, dx, valx, i1)
real x1, dx, valx
int i1
begin
# i1 = aint ((valx-x1)/dx +0.5) + 1
i1 = (valx - x1) / dx + 1.5
end
|