1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
include <math.h>
include "rvpackage.h"
include "rvflags.h"
include "rvplots.h"
# GET_FFT - Take the input real array and return the absolute value of it's
# DFT. The array rfft must be sized to at least to the power of two greater
# than npts.
procedure get_fft (rv, rinpt, npts, rfft, fnpts)
pointer rv #I RV struct pointer
real rinpt[ARB] #I Input real array
int npts #I No. pts in rinpt
real rfft[ARB] #O Output abs value of DFT
int fnpts #O No. pts in output array.
pointer sp, tp, cpr, cpi, fft
int i, last, ishift
real xtmp, cx_abs()
begin
fnpts = RV_FFTNPTS (rv) # Get FFT size
call smark (sp)
call salloc (tp, fnpts, TY_REAL) # Allocate temp vector
call salloc (cpr, fnpts, TY_REAL) # Allocate temp vector
call salloc (cpi, fnpts, TY_REAL)
call salloc (fft, 2*fnpts, TY_REAL)
call aclrr (Memr[tp], fnpts)
call aclrr (Memr[cpr], fnpts)
call aclrr (Memr[cpi], fnpts)
call amovr (rinpt, Memr[tp], npts)
# Do forward transform
ishift = 0
if (RV_WHERE(rv) == TOP) {
call prep_spec (rv, RV_OSAMPLE(rv), npts, fnpts, RV_NPTS(rv),
tp, cpr, ishift, YES)
} else {
call prep_spec (rv, RV_RSAMPLE(rv), npts, fnpts, RV_RNPTS(rv),
tp, cpr, ishift, YES)
}
call afftrr (Memr[cpr], Memr[cpi], Memr[cpr], Memr[cpi], fnpts)
if (RVP_WHEN(rv) == AFTER) {
if (RV_WHERE(rv) == TOP) {
if (RV_FILTER(rv) == OBJ_ONLY || RV_FILTER(rv) == BOTH) {
call cx_pak (Memr[cpr], Memr[cpi], Memr[fft], fnpts/2)
call rv_filter (rv, Memr[fft], fnpts/2)
call cx_unpak (Memr[fft], Memr[cpr], Memr[cpi], fnpts)
}
} else {
if (RV_FILTER(rv) == TEMP_ONLY || RV_FILTER(rv) == BOTH) {
call cx_pak (Memr[cpr], Memr[cpi], Memr[fft], fnpts/2)
call rv_filter (rv, Memr[fft], fnpts/2)
call cx_unpak (Memr[fft], Memr[cpr], Memr[cpi], fnpts)
}
}
}
# Get the absolute value of the transform
last = fnpts / 2 + 1
do i = 2, last {
xtmp = cx_abs (Memr[cpr+i-1], Memr[cpi+i-1])
if (RVP_LOG_SCALE(rv) == YES) {
if (xtmp != 0.0) # Divide by zero check in log
rfft[i-1] = log10 (xtmp)
else
rfft[i-1] = 0.0
} else
rfft[i-1] = xtmp
}
call sfree (sp)
end
# GET_PSPEC - Take the input real array and return the log of the power
# spectrum. The array pspec must be sized to at least to the power of two
# greater than npts.
procedure get_pspec (rv, rinpt, npts, pspec, fnpts)
pointer rv #I RV struct pointer
real rinpt[ARB] #I Input real array
int npts #I No. pts in rinpt
real pspec[ARB] #O Output abs value of DFT
int fnpts #O No. pts in output array.
pointer sp, tp, cpr, cpi, fft
int i, j, ishift
real xtmp
begin
fnpts = RV_FFTNPTS (rv) # Get FFT size
call smark (sp)
call salloc (tp, fnpts, TY_REAL) # Allocate temp vector
call salloc (cpr, fnpts, TY_REAL) # Allocate temp vector
call salloc (cpi, fnpts, TY_REAL) # Allocate temp vector
call salloc (fft, 2*fnpts, TY_REAL) # Allocate temp vector
call aclrr (Memr[tp], fnpts)
call aclrr (Memr[cpr], fnpts)
call aclrr (Memr[cpi], fnpts)
call amovr (rinpt, Memr[tp], npts)
# Do forward transform
ishift = 0
if (RV_WHERE(rv) == TOP) {
call prep_spec (rv, RV_OSAMPLE(rv), npts, fnpts, RV_NPTS(rv),
tp, cpr, ishift, YES)
} else {
call prep_spec (rv, RV_RSAMPLE(rv), npts, fnpts, RV_RNPTS(rv),
tp, cpr, ishift, YES)
}
call afftrr (Memr[cpr], Memr[cpi], Memr[cpr], Memr[cpi], fnpts)
if (RVP_WHEN(rv) == AFTER) {
if (RV_WHERE(rv) == TOP) {
if (RV_FILTER(rv) == OBJ_ONLY || RV_FILTER(rv) == BOTH) {
call cx_pak (Memr[cpr], Memr[cpi], Memr[fft], fnpts/2)
call rv_filter (rv, Memr[fft], fnpts/2)
call cx_unpak (Memr[fft], Memr[cpr], Memr[cpi], fnpts)
}
} else {
if (RV_FILTER(rv) == TEMP_ONLY || RV_FILTER(rv) == BOTH) {
call cx_pak (Memr[cpr], Memr[cpi], Memr[fft], fnpts/2)
call rv_filter (rv, Memr[fft], fnpts/2)
call cx_unpak (Memr[fft], Memr[cpr], Memr[cpi], fnpts)
}
}
}
# Get the power spectrum
j = fnpts / 2 + 1
do i = 2, j {
xtmp = (Memr[cpr+i-1]*Memr[cpr+i-1]) + (Memr[cpi+i-1]*Memr[cpi+i-1])
if (RVP_LOG_SCALE(rv) == YES) {
if (xtmp != 0.0)
pspec[i-1] = log10 (xtmp)
else
pspec[i-1] = 0.0
} else
pspec[i-1] = xtmp
}
call sfree (sp)
end
# FFT_COSBEL - Apply a cosine bell to the data.
procedure fft_cosbel (v, npts, code, percent)
real v[ARB] #U Data vector
int npts #I Number of data points
int code #I Direction code
# <0 for forward, >=0 for reverse
real percent #I percent of end to mask
int ndpercent, index, i
real f
begin
if (IS_INDEF(percent))
return
ndpercent = int (npts * percent) # Compute no. of endpoints
if (code < 0) { # Forward application of window
do i = 1,ndpercent {
f = (1.0 - cos(PI*real(i-1)/real(ndpercent))) / 2.0
index = npts - i + 1
v[i] = f * v[i]
v[index] = f * v[index]
}
} else if (code >= 0) { # Reverse application of window
do i = 1,ndpercent {
f = (1.0 - cos(PI*real(i-1)/real(ndpercent))) / 2.0
if (abs(f) < 1.0e-3)
f = 1.0e-3
index = npts - i + 1
v[i] = v[i] / f
v[index] = v[index] / f
}
}
end
# FFT_FIXWRAP - Fix the wrap around ordering that results from the Numerical
# Recipes FFT routines. Re-ordering is done such that points 1 to N/2 are
# switched in the array with points N/2+1 to N. Re-ordering is done in-place.
procedure fft_fixwrap (v, npts)
real v[ARB] #U Data array in wrap around order
int npts #I length of data array
real temp
int i
begin
do i = 1, npts/2 {
temp = v[i]
v[i] = v[i+npts/2]
v[i+npts/2] = temp
}
end
# FFT_POW2 - Find the power of two that is greater than N.
# Returns INDEFI if a power can't be found less than 2^15.
int procedure fft_pow2 (N)
int N #I Number of data points
int i, nn
begin
nn = 0
do i = 1, 31 {
nn = 2 ** i
if (nn >= N) # return 2**i > N
return (nn)
}
return (INDEFI)
end
|