1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
include <math.h>
include <gset.h>
include <math/nlfit.h>
include "rvpackage.h"
include "rvflags.h"
define USE_DOUBLE TRUE
# RV_FGAUSS - Fit a Gaussian to the specified function. Compute and return
# an array of the fitted gaussian at the specified resolution in ccf[].
# 'c' contains the coefficients of the fit. 'ishift' is used as an initial
# guess at the center parameter, c[2].
procedure rv_fgauss (rv, xcf, ycf, ledge, redge, npts, ishift, c, sigma)
pointer rv #I RV struct pointer
real xcf[ARB], ycf[ARB] #I CCF array
int ledge, redge #I Index of left edge
int npts #I Number of points
int ishift #I Initial shift guess
real c[ARB] #O Array of coefficients
real sigma #O Error of center position
pointer sp, gp, nl, w, list, fit
real distance, width, sigmac[NPARS], oldc2, diff
int ft_func, ft_dfunc
int i, j, stat, npar, nvars
long lseed
bool reset_c1
double cd[NPARS], sigmacd[NPARS] # Variable for double-precision fit
double dtol, ccfvard, chisqrd, oldc2d
pointer wd, xcfd, ycfd, fitd
int ft_funcd, ft_dfuncd
extern d_cgauss1d(), d_cdgauss1d()
extern cgauss1d(), cdgauss1d()
extern lorentz(), dlorentz()
real fit_weight(), rv_maxpix()
int locpr(), rv_check_converge(), rv_fitconv()
include "fitcom.com"
define NPARS 4
begin
call smark (sp)
call salloc (w, npts, TY_REAL)
call salloc (fit, npts, TY_REAL)
call salloc (list, NPARS, TY_INT)
call aclrr(Memr[w], npts)
call aclrr(Memr[fit], npts)
call aclri(Memi[list], NPARS)
call aclrr(sigmac, NPARS)
call aclrr(c, NPARS)
call salloc (wd, npts, TY_DOUBLE) ; call aclrd(Memd[wd], npts)
call salloc (xcfd, npts, TY_DOUBLE) ; call aclrd(Memd[xcfd], npts)
call salloc (ycfd, npts, TY_DOUBLE) ; call aclrd(Memd[ycfd], npts)
call salloc (fitd, npts, TY_DOUBLE) ; call aclrd(Memd[fitd], npts)
# Mark the points being used in the fit.
gp = RV_GP(rv)
if (gp != NULL && RV_INTERACTIVE(rv) == YES) {
call gseti (gp, G_WCS, 2)
call gpmark (gp, xcf[ledge], ycf[ledge], npts, 4, 2., 2.)
call gflush (gp)
}
# Initialize the parameters.
if (DBG_DEBUG(rv) == YES) {
call d_printf (DBG_FD(rv), "rv_fgauss:\tFunction = %d\n")
call pargi(RV_FITFUNC(rv))
}
call init_gcoeffs (rv, xcf, ycf, ledge, redge, npts, ishift, c)
# Set up some of the NLFIT stuff.
width = npts
Memi[list] = 1 # amplitude
Memi[list+1] = 2 # center
Memi[list+2] = 3 # sigma/fwhm
if (IS_INDEF(RV_BACKGROUND(rv))) {
Memi[list+3] = 4 # background
nfitpars = NPARS
} else
nfitpars = NPARS - 1
# Get the function addresses.
if (RV_FITFUNC(rv) == GAUSSIAN) {
if (USE_DOUBLE) {
ft_funcd = locpr (d_cgauss1d)
ft_dfuncd = locpr (d_cdgauss1d)
} else {
ft_func = locpr (cgauss1d)
ft_dfunc = locpr (cdgauss1d)
}
} else if (RV_FITFUNC(rv) == LORENTZIAN) {
ft_func = locpr (lorentz)
ft_dfunc = locpr (dlorentz)
}
# Now iterate the fit.
j = 1
oldc2 = c[2]
nvars = 1
lseed = 1
ccfvar = 0.0
chisqr = 0.0
oldc2d = c[2]
ccfvard = 0.0d0
chisqrd = 0.0d0
dtol = double (RV_TOLERANCE(rv))
while (j < RV_MAXITERS(rv)) {
if (j > 1) {
# Move data window if necessary; only one pixel per iteration.
diff = oldc2 - c[2]
reset_c1 = false
if (diff > 1 && ledge > 1) {
ledge = ledge - 1
reset_c1 = true
} else if (diff < -1 && (ledge+npts) < RV_CCFNPTS(rv)) {
ledge = ledge + 1
reset_c1 = true
}
if (reset_c1) {
if (!IS_INDEF(RV_BACKGROUND(rv)))
c[1] = rv_maxpix (ycf[ledge], npts) - RV_BACKGROUND(rv)
else
c[1] = rv_maxpix (ycf[ledge], npts)
}
# Now check to see if we're converging sensibly, and recover
# by rejecting points or adjusting parameters.
stat = rv_check_converge (rv, xcf, ycf, ledge, redge, width,
npts, ishift, oldc2, lseed, c)
}
# Compute the point weighting.
do i = 1, npts {
distance = abs (c[2] - xcf[ledge+i-1])
Memr[w+i-1] = fit_weight (distance, width, RV_WEIGHTS(rv))
}
if (USE_DOUBLE) {
# Convert the types for the double calculation.
call achtrd (c, cd, NPARS)
call achtrd (sigmac, sigmacd, NPARS)
call achtrd (Memr[w], Memd[wd], npts)
call achtrd (xcf[ledge], Memd[xcfd], npts)
call achtrd (ycf[ledge], Memd[ycfd], npts)
# Initialize the NLFIT routines and do the fitting.
call nlinitd (nl, ft_funcd, ft_dfuncd, cd, sigmacd, NPARS,
Memi[list], nfitpars, d_tol, RV_MAXITERS(rv))
call nlfitd (nl, Memd[xcfd], Memd[ycfd], Memd[wd], npts, nvars,
WTS_USER, stat)
call nlvectord (nl, Memd[xcfd], Memd[fitd], npts, 1)
call nlpgetd (nl, cd, npar)
call nlerrorsd (nl, Memd[ycfd], Memd[fitd], Memd[wd], npts,
ccfvard, chisqrd, sigmacd)
call nlfreed (nl)
# Move the results back.
do i = 1, NPARS {
c[i] = cd[i]
sigmac[i] = sigmacd[i]
}
ccfvar = ccfvard
chisqr = chisqrd
} else {
# Initialize the NLFIT routines and do the fitting.
call nlinitr (nl, ft_func, ft_dfunc, c, sigmac, NPARS,
Memi[list], nfitpars, RV_TOLERANCE(rv), RV_MAXITERS(rv))
call nlfitr (nl, xcf[ledge], ycf[ledge], Memr[w], npts, nvars,
WTS_USER, stat)
call nlvectorr (nl, xcf[ledge], Memr[fit], npts, 1)
call nlpgetr (nl, c, npar)
call nlerrorsr (nl, ycf[ledge], Memr[fit], Memr[w], npts,
ccfvar, chisqr, sigmac)
call nlfreer (nl)
}
if (DBG_DEBUG(rv) == YES && DBG_FD(rv) != NULL) {
call d_printf (DBG_FD(rv),
"\titer %d = %.6g %.6g %.6g %.6g chi2=%g o2=%g\n")
call pargi (j); call pargr (c[1]) ; call pargr (c[2])
call pargr (c[3]) ; call pargr (c[4]); call pargr (chisqr)
call pargr (oldc2)
call flush (DBG_FD(rv))
}
# Now check for convergence.
if (USE_DOUBLE) {
if (j == 1) # initialize
oldc2d = cd[2]
else if (abs(cd[2] - oldc2d) < 0.0001) # converged
break
else
oldc2d = cd[2]
} else {
if (j == 1) # initialize
oldc2 = c[2]
else if (abs(c[2] - oldc2) < 0.0001) # converged
break
else
oldc2 = c[2]
}
j = j + 1 # next iteration
}
# See if we couldn't converge
if (rv_fitconv (rv, j, c) == ERR_FIT) {
RV_ERRCODE(rv) = ERR_FIT
call aclrr (c, NPARS)
call aclrr (sigmac, NPARS)
call sfree (sp)
return
}
niter = j
nfit = width
sigma = abs (sigmac[2])
call amovr (sigmac, ECOEFF(rv,1), nfitpars)
if (!IS_INDEF(RV_BACKGROUND(rv)))
ECOEFF(rv,4) = 0.0
# Debug output.
if (DBG_DEBUG(rv) == YES && DBG_LEVEL(rv) >= 2 && DBG_FD(rv) != NULL) {
call d_printf(DBG_FD(rv),"\tfitted c[1-4] = %.6g %.6g %.6g %.6g\n")
call pargr (c[1]) ; call pargr (c[2])
call pargr (c[3]) ; call pargr (c[4])
call flush (DBG_FD(rv))
}
if (nl != NULL)
call nlfreer (nl)
call sfree (sp)
end
# FIT_WEIGHT - Compute the point weighting, with error checking to avoid
# problems with exponentiation of negative numbers and weights.
real procedure fit_weight (dist, width, wt_exp)
real dist #I Distance from center
real width #I Width of data window
real wt_exp #I Weighting exponent
real base, weight
begin
if (wt_exp == 0.0)
return (1.0)
base = max (0.0, (1. - (dist / (width / 2.))))
if (base > 0.0)
weight = base ** wt_exp
else
weight = 0.0
return (weight)
end
# INIT_GCOEFFS - Initialize the Gaussian/Lorentzian coefficients based on
# the data.
procedure init_gcoeffs (rv, xcf, ycf, ledge, redge, npts, ishift, c)
pointer rv #I RV struct pointer
real xcf[ARB], ycf[ARB] #I CCF array
int ledge, redge #I Index of left edge
int npts #I Number of points
int ishift #I Initial shift guess
real c[4] #O Array of initial coefficients
real y
int left, right
real rv_maxpix(), rv_minpix()
begin
# Initialize the parameters.
if (!IS_INDEF(RV_BACKGROUND(rv))) {
c[1] = rv_maxpix (ycf[ledge], npts) #- RV_BACKGROUND(rv)
c[4] = RV_BACKGROUND(rv) # background
} else {
c[1] = rv_maxpix (ycf[ledge], npts)
c[4] = rv_minpix (ycf[ledge], npts)
}
y = (c[1] - c[4]) / 2. + c[4]
c[2] = xcf[ishift] - 0.1 # center
left = ledge
right = redge
while (ycf[left+1] < y && left < ishift)
left = left + 1
while (ycf[right-1] < y && right > ishift)
right = right - 1
if (RV_FITFUNC(rv) == LORENTZIAN) {
# Lorentz FWHM
#c[3] = max (2.,(xcf[right] - xcf[left] + 1))
c[3] = min (-2.,-(xcf[right] - xcf[left] + 1)/2.0)
c[3] = max (2.,(xcf[right] - xcf[left] + 1)/2.0)
} else {
# Sigma ** 2
#c[3] = sqrt (xcf[right] - xcf[left] + 1) / 2.35482
c[3] = max (2.,(((xcf[right]-xcf[left]+1) / 2.35482) ** 2.))
}
if (DBG_DEBUG(rv) == YES) {
call d_printf (DBG_FD(rv), "\tinit c[1-4] = %.6g %.6g %.6g %.6g\n")
call pargr (c[1]) ; call pargr (c[2])
call pargr (c[3]) ; call pargr (c[4])
call d_printf (DBG_FD(rv), "\tr/l=%d/%d xr/l=%f/%f y=%f\n")
call pargi(right) ; call pargi(left) ; call pargr(xcf[right])
call pargr(xcf[left]) ; call pargr(y)
call flush (DBG_FD(rv))
}
end
# CHECK_CONVERGENCE - Check to see if we're converging correctly, otherwise
# reject points.
int procedure rv_check_converge (rv, xcf, ycf, ledge, redge, width, npts,
ishift, oldc, lseed, c)
pointer rv #I RV struct pointer
real xcf[ARB], ycf[ARB] #I CCF array
int ledge, redge #I Index of left edge
real width #I Width of fit region
int npts #I Number of points
int ishift #I Initial shift guess
real oldc #I Old center
long lseed #I Seed
real c[ARB] #O Array of coefficients
int i
real urand(), frac
begin
# Generate a random percentage to nudge the params in case they
# get lost in parameter space.
frac = urand (lseed) / 10.0
# Check for negative sigma ** 2
if (c[3] <= 0.0 && RV_FITFUNC(rv) == GAUSSIAN) {
if (!IS_INDEF(RV_BACKGROUND(rv))) {
#if (RV_INTERACTIVE(rv) == YES) {
# call rv_errmsg (
# "Fit not converging: rejecting points below background\n")
#}
while (ycf[ledge+1] < RV_BACKGROUND(rv) && ledge < ishift)
ledge = ledge + 1
while (ycf[redge-1] < RV_BACKGROUND(rv) && redge > ishift)
redge = redge - 1
npts = redge - ledge + 1
if (npts < RV_MINWIDTH(rv))
return (ERR_FIT)
width = real (npts)
}
call init_gcoeffs (rv, xcf, ycf, ledge, redge, npts, ishift, c)
do i = 2, 3
c[i] = c[i] - (c[i] * frac) # add some scatter
}
# Now check for a negative amplitude or unusual shift and reset.
if (abs(c[2]-oldc) >= 5 || c[1] <= 0.0) {
call init_gcoeffs (rv, xcf, ycf, ledge, redge, npts, ishift, c)
do i = 2, 3
c[i] = c[i] + (c[i] * frac) # add some scatter
}
if (DBG_DEBUG(rv) == YES) {
call d_printf (DBG_FD(rv), "\tchk = %.6g %.6g %.6g %.6g\n")
call pargr (c[1]) ; call pargr (c[2])
call pargr (c[3]) ; call pargr (c[4])
call flush (DBG_FD(rv))
}
return (OK)
end
# RV_FITCONV - Check to see if the fit converged.
int procedure rv_fitconv (rv, niter, coeff)
pointer rv #I RV struct pointer
int niter #I Number of iterations
real coeff[4] #I Coefficient array
begin
if (niter >= RV_MAXITERS(rv))
return (ERR_FIT)
if (coeff[1] < 0.0)
return (ERR_FIT)
if ((coeff[3] < 0.0 || coeff[3] > 1.0e4) && RV_FITFUNC(rv) == GAUSSIAN)
return (ERR_FIT)
return (OK)
end
|