aboutsummaryrefslogtreecommitdiff
path: root/pkg/images/imcoords/doc/ccmap.hlp
blob: e19d30fa1bd562022add084888601d862ea3c3b7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
.help ccmap Jan01 images.imcoords
.ih
NAME
ccmap -- compute plate solutions using matched pixel and celestial coordinate
lists
.ih
USAGE
ccmap input database
.ih
PARAMETERS
.ls input
The input text files containing the pixel and celestial coordinates of
points in the input images. The coordinates are listed one per line with x, y,
ra / longitude, and dec / latitude in the columns specified by the
\fIxcolumn\fR, \fIycolumn\fR, \fIlngcolumn\fR, and \fIlatcolumn\fR parameters
respectively.  Whether all files are combined to produce one solution or
each file produces a separate solution depends on whether there is a
matching list of output \fIsolutions\fR names or \fIresults\fR files.
.le
.ls database
The text database file where the computed plate solutions are stored.
.le
.ls solutions = ""
An optional list of plate solution names. If there are multiple input
coordinate files and no name or a single name is specified then the
input coordinates are combined to produce a single solution.  Otherwise
the list must match the number of input coordinate files.  If no names are
supplied then the database records are assigned the names of the input
images \fIimages\fR, or the names of the coordinate files \fIinput\fR.
In the case of multiple coordinate files the first image or input is used.
.le
.ls images = ""
The images associated with the input coordinate files. The number of images
must be zero or equal to the number of input coordinate files. If an input
image exists and the \fIupdate\fR parameter is enabled, the image wcs will
be created from the linear component of the computed plate solution
and written to the image header.
.le
.ls results = ""
Optional output files containing a summary of the results including a
description of the plate geometry and a listing of the input coordinates,
the fitted coordinates, and the fit residuals. The number of
results files must be zero, one or equal to the number of input files. If
results is "STDOUT" the results summary is printed on the standard output.
If there are multiple input coordinate files and zero or one output is
specified then the input coordinates are combined to produce a single solution.
.le
.ls xcolumn = 1, ycolumn = 2, lngcolumn = 3, latcolumn = 4
The input coordinate file columns containing the x, y, ra / longitude and
dec / latitude values.
.le
.ls xmin = INDEF, xmax = INDEF, ymin = INDEF, ymax = INDEF
The range of x and y pixel coordinates over which the computed coordinate
transformation is valid. These limits should be left at INDEF or set to
the values of the column and row limits of the input images, e.g xmin = 1.0,
xmax = 512, ymin= 1.0, ymax = 512 for a 512 x 512 image.  If xmin, xmax, ymin,
or ymax are undefined, they are set to the minimum and maximum x and y
pixels values in \fIinput\fR.
.le
.ls lngunits = "", latunits = ""
The units of the input ra / longitude and dec / latitude coordinates. The
options are "hours", "degrees", and "radians" for ra / longitude, and
"degrees" and "radians" for dec / latitude. If the lngunits and latunits
are undefined they default to the preferred units for the coordinate system
specified by \fIinsystem\fR, e.g. "hours" and "degrees" for equatorial
systems, and "degrees" and "degrees" for ecliptic, galactic, and
supergalactic systems.
.le
.ls insystem = "j2000"
The input celestial coordinate system. The \fIinsystem\fR parameter
sets the preferred units for the input celestial coordinates,
tells CCMAP how to transform the celestial coordinates of the reference
point from the reference point coordinate system to the input coordinate
system, and sets the correct values of the image header keywords CTYPE,
RADECSYS, EQUINOX, and MJD-WCS if the image header wcs is updated. The 
systems of most interest to users are "icrs", "j2000", and "b1950" which
stand for the ICRS J2000.0, FK5 J2000.0 and FK4 B1950.0 celestial coordinate
systems respectively.  The full set of options are the following:

.ls equinox [epoch]
The equatorial mean place post-IAU 1976 (FK5) system if equinox is a
Julian epoch, e.g. J2000.0 or 2000.0, or the equatorial mean place
pre-IAU 1976 system (FK4) if equinox is a Besselian epoch, e.g. B1950.0
or 1950.0. Julian equinoxes are prefixed by a J or j, Besselian equinoxes
by a B or b. Equinoxes without the J / j or B / b prefix are treated as
Besselian epochs if they are < 1984.0, Julian epochs if they are >= 1984.0.
Epoch is the epoch of the observation and may be a Julian
epoch, a Besselian epoch, or a Julian date. Julian epochs
are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to the epoch type of
equinox if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date.  If undefined epoch defaults to equinox.
.le
.ls icrs [equinox] [epoch]
The International Celestial Reference System where equinox is
a Julian or Besselian epoch e.g. J2000.0  or B1980.0.
Equinoxes without the J / j or B / b prefix are treated as Julian epochs.
The default value of equinox is J2000.0.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date.  If undefined epoch defaults to equinox.
.le
.ls fk5 [equinox] [epoch] 
The equatorial mean place post-IAU 1976 (FK5) system where equinox is
a Julian or Besselian epoch e.g. J2000.0  or B1980.0.
Equinoxes without the J / j or B / b prefix are treated as Julian epochs.
The default value of equinox is J2000.0.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date.  If undefined epoch defaults to equinox.
.le
.ls fk4 [equinox] [epoch]
The equatorial mean place pre-IAU 1976 (FK4) system where equinox is a
Besselian or Julian epoch e.g. B1950.0  or J2000.0,
and epoch is the Besselian epoch, the Julian epoch, or the Julian date of the
observation.
Equinoxes without the J / j or B / b prefix are treated
as Besselian epochs. The default value of equinox is B1950.0. Epoch
is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date.  If undefined epoch defaults to equinox.
.le
.ls noefk4 [equinox] [epoch]
The equatorial mean place pre-IAU 1976 (FK4) system but without the E-terms
where equinox is a Besselian or Julian epoch e.g. B1950.0 or J2000.0,
and epoch is the Besselian epoch, the Julian epoch, or the Julian date of the
observation.
Equinoxes without the J / j or B / b prefix are treated
as Besselian epochs. The default value of equinox is B1950.0.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian day.  If undefined epoch defaults to equinox.
.le
.ls apparent epoch 
The equatorial geocentric apparent place post-IAU 1976 system where
epoch is the epoch of observation.
Epoch is a Besselian epoch, a Julian epoch or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian
epochs if the epoch value < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date.
.le
.ls ecliptic epoch
The ecliptic coordinate system where epoch is the epoch of observation.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian epochs
if the epoch values < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian day.
.le
.ls galactic [epoch]
The IAU 1958 galactic coordinate system.
Epoch is a Besselian epoch, a Julian epoch or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian
epochs if the epoch value < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. The default value of epoch is B1950.0.
.le
.ls supergalactic [epoch]
The deVaucouleurs supergalactic coordinate system.
Epoch is a Besselian epoch, a Julian epoch or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian
epochs if the epoch value < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. The default value of epoch is B1950.0.
.le

In all the above cases fields in [] are optional with the defaults as
described. The epoch field for the icrs, fk5, galactic, and supergalactic
coordinate systems is only used if the input coordinates are in the
equatorial fk4, noefk4, fk5, or icrs systems and proper motions are supplied.
Since CCMAP does not currently support proper motions these fields are
not required.
.le

.ls refpoint = "coords"
The definition of the sky projection reference point in celestial coordinates,
e.g. the tangent point in the case of the usual tangent plane projection.
The options are:
.ls coords
The celestial coordinates of the reference point are set to the mean of the 
input celestial coordinates, e.g. the mean of ra / longitude and dec /
latitude coordinates. If the true tangent point is reasonably close to
the center of the input coordinate distribution and the input is not
too large, this approximation is reasonably accurate.
.le
.ls user
The values of the keywords \fIlngref\fR, \fIlatref\fR, \fIrefsystem\fR,
\fIlngrefunits\fR, and \fIlatrefunits\fR are used to determine the celestial
coordinates of the reference point.
.le
.le
.ls xref = "INDEF", yref = "INDEF"
The reference pixel may be specified as a value or image header keyword.
In the latter case a reference image must be specified.  By specifying
the reference pixel the solution will be constrained to putting the
reference coordinate at that point.
.le
.ls lngref = "INDEF", latref = "INDEF"
The ra / longitude and dec / latitude of the reference point(s).  Lngref
and latref may be numbers, e.g 13:20:42.3 and -33:41:26 or keywords for the
appropriate parameters in the image header, e.g. RA/DEC or CRVAL1/CRVAL2.
Each parameter may be a list to apply different reference points to
each input coordinate list.  If lngref and latref are undefined then
the position of the reference point defaults to the mean of the input
coordinates.
.le
.ls refsystem = "INDEF"
The celestial coordinate system of the reference point. Refsystem may
be any one of the options listed under the \fIinsystem\fR parameter, e.g.
"b1950", or an image header keyword containing the epoch of the observation
in years, e.g. EPOCH for NOAO data. In the latter case the coordinate system is
assumed to be equatorial FK4 at equinox EPOCH. If refsystem is undefined
the celestial coordinate system of the reference point defaults to the
celestial coordinate system of the input coordinates \fIinsystem\fR.
.le
.ls lngrefunits = "", latrefunits = ""
The units of the reference point celestial  coordinates. The options
are "hours", "degrees", and "radians" for the ra / longitude coordinates,
and "degrees" and "radians" for the dec /latitude coordinates. 
If lngunits and latunits are undefined they default to the  units of the
input coordinate system.
.le
.ls projection = "tan"
The sky projection geometry. The most commonly used projections in astronomy
are "tan", "arc", "sin", and "lin". Other supported  standard projections
are "ait", "car","csc", "gls", "mer", "mol", "par", "pco", "qsc", "stg",
"tsc", and "zea". A new experimental function "tnx", a combination of the
tangent plate projection and polynomials, is also available.
.le
.ls fitgeometry = "general"
The plate solution geometry to be used. The options are the following, where
xi and eta refer to the usual standard coordinates used in astrometry.
.ls shift
Xi and eta shifts only are fit.
.le
.ls xyscale
Xi and eta shifts and x and y magnification factors in " / pixel are fit.
Axis flips are allowed for.
.le
.ls rotate
Xi and eta shifts and a rotation angle are fit. Axis flips are allowed for.
.le
.ls rscale
Xi and eta shifts, a magnification factor in " / pixel assumed to be the same
in x and y, and a rotation angle are fit. Axis flips are allowed for.
.le
.ls rxyscale
Xi and eta shifts, x and y magnifications factors in " / pixel, and a rotation
angle are fit.  Axis flips are allowed for.
.le
.ls general
A polynomial of arbitrary order in x and y is fit. A linear term and a
distortion term are computed separately. The linear term includes a xi and eta
shift, an x and y scale factor in " / pixel, a rotation and a skew.  Axis
flips are also allowed for in the linear portion of the fit. The distortion
term consists of a polynomial fit to the residuals of the linear term. By
default the distortion term is set to zero.
.le

For all the fitting geometries except "general" no distortion term is fit,
i.e. the x and y polynomial orders are assumed to be 2 and the cross term
switches are assumed to be set to "none", regardless of the values of the
\fIxxorder\fR, \fIxyorder\fR, \fIxxterms\fR, \fIyxorder\fR, \fIyyorder\fR
and \fIyxterms\fR parameters set by the user.
.le
.ls function = "polynomial"
The type of analytic coordinate surface to be fit. The options are the
following.
.ls legendre
Legendre polynomials in x and y.
.le
.ls chebyshev
Chebyshev polynomials in x and y.
.le
.ls polynomial
Power series polynomials in x and y.
.le
.le
.ls xxorder = 2, xyorder = 2,  yxorder = 2, yyorder = 2
The order of the polynomials in x and y for the xi and eta fits respectively.
The default order and cross term settings define the linear term in x
and y, where the 6 coefficients can be interpreted in terms of an xi and eta
shift, an x and y scaling in " / pixel, and rotations of the x and y axes.
The "shift", "xyscale", "rotation", "rscale", and "rxyscale", fitting geometries
assume that the polynomial order parameters are 2 regardless of the values
set by the user. If any of the order parameters are higher than 2 and
\fIfitgeometry\fR is "general", then a distortion surface is fit to the
residuals from the linear portion of the fit.
.le
.ls xxterms = "half", yxterms = "half"
The options are:
.ls none
The individual polynomial terms contain powers of x or powers of y but not
powers of both.
.le
.ls half
The individual polynomial terms contain powers of x and powers of y, whose
maximum combined power is MAX (xxorder - 1, xyorder - 1) for the xi fit and
MAX (yxorder - 1, yyorder - 1) for the eta fit. This is the recommended
option for higher order plate solutions. 
.le
.ls full
The individual polynomial terms contain powers of x and powers of y, whose
maximum combined power is MAX (xxorder - 1 + xyorder - 1) for the xi fit and
MAX (yxorder - 1 + yyorder - 1) for the eta fit.
.le

The "shift", "xyscale", "rotation",
"rscale", and "rxyscale" fitting geometries, assume that the
cross term switches are set to "none" regardless of the values set by the user.
If either of the cross-terms parameters is set to "half" or "full" and
\fIfitgeometry\fR is "general" then a distortion surface is fit to the
residuals from the linear portion of the fit.
.le
.ls maxiter = 0
The maximum number of rejection iterations. The default is no rejection.
.le
.ls reject = INDEF
The rejection limit in units of sigma.
.le
.ls update = no
Update the world coordinate system in the input image headers ?
The required numerical quantities represented by the keywords CRPIX,
CRVAL, and CD are computed from the linear portion of the plate solution,
The values of the keywords CTYPE, RADECSYS, EQUINOX, and MJD-WCS
are set by the \fIprojection\fR and \fIinsystem\fR parameters. As there
is currently no standard mechanism for storing the higher order plate solution
terms if any in the image header wcs, these terms are currently ignored
unless the projection function is the experimental function "tnx". The "tnx"
function is not FITS compatible and can only be understood by IRAF. Any existing
image wcs represented by the above keywords is overwritten during the update.
.le
.ls pixsystem = "logical"
The input pixel coordinate system. The options are:
.ls logical
The logical pixel coordinate system is the coordinate system of the image
pixels on disk. Since most users measure the pixel coordinates of objects
in this system, "logical" is the system of choice for most applications.
.le
.ls physical
The physical coordinate system is the pixel coordinate system of the
parent image if any. This option may be useful for users working on images
that are pieces of a larger mosaic.
.le

The choice of pixsystem has no affect on the fitting process, but does 
determine how the image header wcs is updated.
.le
.ls verbose = yes
Print detailed messages about the progress of the task on the standard output ?
.le
.ls interactive = yes
Compute the plate solution interactively ?
In interactive mode the user may interact with the fitting process, e.g.
change the order of the fit, reject points, display the data and refit, etc.
.le
.ls graphics = "stdgraph"
The graphics device.
.le
.ls cursor = ""
The graphics cursor.
.le
.ih
DESCRIPTION

CCMAP computes the plate solution for an image or set of images using lists
of matched pixel and celestial coordinates. The celestial coordinates
are usually equatorial coordinates, but may also be ecliptic, galactic,
or supergalactic coordinates.  The input coordinate files \fIinput\fR must
be text file tables whose columns are delimited by whitespace. The pixel
and celestial coordinates are listed in input, one per line with  x, y,
ra / longitude, and dec / latitude in columns \fIxcolumn\fR, \fIycolumn\fR,
\fIlngcolumn\fR, and \fIlatcolumn\fR respectively.

The \fIxmin\fR, \fIxmax\fR, \fIymin\fR and \fIymax\fR parameters define
the region of validity of the fit in the pixel coordinate system. They should
normally either be left set to INDEF, or set to the size of input images
\fIimages\fR if any, e.g. xmin= 1.0, xmax= 512.0, ymin = 1.0, ymax = 512.0
for a 512 square image. If set these parameters are also used to reject out
of range pixel data before the actual fitting is done.

The \fIlngunits\fR and \fIlatunits\fR parameters set the units of the input
celestial coordinates. If undefined lngunits and latunits assume sensible
defaults for the input celestial coordinate system set by the \fIinsystem\fR
parameter, e.g. "hours" and "degrees" for equatorial coordinates and "degrees"
and "degrees" for galactic coordinates. The input celestial coordinate system
must be one of the following: equatorial, ecliptic, galactic, or supergalactic.
The equatorial coordinate systems must be one of: 1) FK4, the mean place
pre-IAU 1976 system, 2) FK4-NO-E, the same as FK4 but without the E-terms,
3) FK5, the mean place post-IAU 1976 system, 4) GAPPT, the geocentric apparent
place in the post-IAU 1976 system.

The plate solution computed by CCMAP has the following form, where x and y
are the pixel coordinates of points in the input image and xi and eta are the
corresponding standard coordinates in units of " / pixel.

.nf
     xi = f (x, y)
    eta = g (x, y)
.fi

The standard coordinates xi and eta are computed from the input celestial
coordinates using the sky projection geometry \fIprojection\fR and
the celestial coordinates of the projection reference point set by
the user. The default projection is the tangent plane or gnomonic
projection commonly used in optical astronomy. The projections most commonly
used in astronomy are "sin" (the orthographic projection, used in radio
aperture synthesis), "arc" (the zenithal equidistant projection, widely
used as an approximation for Schmidt telescopes), and "lin" (linear).
Other supported projections are "ait", "car", "csc", "gls", "mer", "mol",
"par", "pco", "qsc", "stg", "tsc", and "zea". The experimental projection
function "tnx" combines the "tan" projection with a polynomial fit
to the residuals can be used to represent more complicated distortion
functions.

There are two modes in which this task works with multiple input
coordinate lists.  In one case each input list and possible associated
image is treated independently and produce separate solutions.  To
select this option requires specifying a matching list of solution
names or output results files.  Note that this can also be simply done
by running the task multiple times with a single input list each time.

In the second mode data from multiple input lists are combined to
produce a single solution.  This is useful when multiple exposures are
taken to define a higher quality astrometric solution.  This mode is
selected when there are multiple input lists, and possibly associated
images, and no solution name or a single solution name is specified.

When combining input data each set of coordinates may have different
reference points which can be specified either as a list or by
reference to image header keywords.  The different reference points
are used to convert each set of coordinates to the same coordinate
frame.  Typically this occurs when a set of exposures, each with the
same coordinate reference pixel, has slightly different pointing as
defined by the coordinate reference value.  These different points
result from a dither and can be useful to more completely sample the
image pixel space.  In other words, astrometric reference stars can be
moved around the images to produce many more fitting points than occur
with a single exposure. The key point to this process is that the
shifts are mapped by the reference points of the pointing and the
standard coordinates are independent of the pointing.

A particular feature primarily intending for combining multiple
exposures, but applies to single exposures as well, is an adjustment to
the specified tangent point value based on the image WCS.  When images,
reference pixels, and reference coordinates are all defined and the
images contain a celestial WCS the following computation is performed.
The reference information replaces the WCS tangent point values, though
typically the initial reference information is specified as the tangent
point, and the updated WCS is used to evaluate celestial coordinates
from the input pixel coordinates. The average difference between the WCS
evaluated coordinates and the input celestial coordinates is computed.
This difference is applied to the reference point prior to the standard
coordinate plate solution calculation.  In other words, the reference
point is tweaked in the initial image WCS to make it agree on average with
the input reference coordinates.  If one updates the WCS of the images by
the plate solution and the repeats the plate solution, particularly when
using multiple exposures, an iterative convergence to a self-consistent
WCS of both the tangent point and plate solution can be obtained.

Several polynomial cross terms options are available. Options "none", 
"half", and "full" are illustrated below for a quadratic polynomial in
x and y.

.nf
xxterms = "none", xyterms = "none"
xxorder = 3, xyorder = 3, yxorder = 3, yyorder = 3

    xi = a11 + a21 * x + a12 * y +
         a31 * x ** 2 + a13 * y ** 2
   eta = a11' + a21' * x + a12' * y +
         a31' * x ** 2 + a13' * y ** 2

xxterms = "half", xyterms = "half"
xxorder = 3, xyorder = 3, yxorder = 3, yyorder = 3

    xi = a11 + a21 * x + a12 * y +
         a31 * x ** 2 + a22 * x * y + a13 * y ** 2
   eta = a11' + a21' * x + a12' * y +
         a31' * x ** 2 + a22' * x * y + a13' * y ** 2

xxterms = "full", xyterms = "full"
xxorder = 3, xyorder = 3, yxorder = 3, yyorder = 3

    xi = a11 + a21 * x + a31 * x ** 2 +
         a12 * y + a22 * x * y +  a32 * x ** 2 * y +
         a13 * y ** 2 + a23 * x *  y ** 2 + a33 * x ** 2 * y ** 2
   eta = a11' + a21' * x + a31' * x ** 2 +
         a12' * y + a22' * x * y +  a32' * x ** 2 * y +
         a13' * y ** 2 + a23' * x *  y ** 2 + a33' * x ** 2 * y ** 2
.fi

If \fIrefpoint\fR is "coords", then the sky projection reference point is set
to the mean of the input celestial coordinates. For images where the true
reference point is close to the center of the input coordinate distribution,
this definition is adequate for many purposes. If \fIrefpoint\fR is "user",
the user may either set the celestial coordinates of the reference
point explicitly, e.g. \fIlngref\fR = 13:41:02.3 and \fIlatref\fR = -33:42:20,
or point these parameters to the appropriate keywords in the input image
header, e.g. \fIlngref\fR = RA, \fIlatref\fR = DEC for NOAO image data.
If undefined the celestial coordinate system of the reference point
\fIrefsystem\fR defaults to the celestial coordinate system of the input
coordinates, otherwise it be any of the supported celestial coordinate
systems described above. The user may also set \fIrefsystem\fR to the
image header keyword containing the epoch of the celestial reference point
coordinates in years, e.g. EPOCH for NOAO data. In this case the
reference point coordinates are assumed to be equatorial FK4 coordinates at the
epoch specified by EPOCH. The units of the reference point celestial
coordinates are specified by the \fIlngrefunits\fR and \fIlatrefunits\fR
parameters. Lngrefunits and latrefunits default to the values of the input
coordinate units if undefined by either the user or the \fIrefsystem\fR
parameter. ONCE DETERMINED THE REFERENCE POINT CANNOT BE RESET DURING
THE FITTING PROCESS.

The \fIxref\fR and \fIyref\fR parameters may be used to constrain the
solution to putting the reference coordinate at the reference pixel.
Effectively what this does is fix the zero-th order coefficient in the
linear part of the solution.  If a reference pixel is not specified the
solution will produce a point determined from the zero-th order
constant coefficient.  This may not be what is expected based on
the specified reference celestial coordinate.

The fitting functions f and g are specified by the \fIfunction\fR parameter
and may be power series polynomials, Legendre polynomials, or Chebyshev
polynomials of order \fIxxorder\fR and \fIxyorder\fR in x and \fIyxorder\fR
and \fIyyorder\fR in y. Cross-terms are optional and are turned on and
off by setting the \fIxxterms\fR and \fIxyterms\fR parameters. If the
\fBfitgeometry\fR parameter is anything other than "general", the order
parameters assume the value 2 and the cross-terms switches assume the value
"none", regardless of the values set by the user. All computation are done in
double precision. Automatic pixel rejection may be enabled by setting
\fImaxiter\fR > 0 and \fIreject\fR to a  positive value, usually something
in the range 2.5-5.0.

CCMAP may be run interactively by setting \fIinteractive\fR to "yes" and
inputting commands by the use of simple keystrokes. In interactive mode the
user has the option of changing the fitting parameters and displaying the
data and fit graphically until a satisfactory fit has been achieved. The
keystroke commands are listed below.

.nf

?       Print options
f       Fit data and graph fit with the current graph type (g,x,r,y,s)
g       Graph the data and the current fit
x,r     Graph the xi residuals versus x and y respectively
y,s     Graph the eta residuals versus x and y respectively
d,u     Delete or undelete the data point nearest the cursor
o       Overplot the next graph
c       Toggle the line of constant x and y plotting option
t       Plot a line of constant x and y through nearest data point
l       Print xishift, etashift, xscale, yscale, xrotate, yrotate
q       Exit the interactive fitting code
.fi

The parameters listed below can be changed interactively with simple colon
commands. Typing the parameter name along will list the current value.

.nf
:show                List parameters
:projection          Sky projection 
:refpoint            Sky projection reference point
:fit      [value]    Fit type (shift,xyscale,rotate,rscale,rxyscale,general)
:function [value]    Fitting function (chebyshev,legendre,polynomial)
:xxorder  [value]    Xi fitting function order in x
:xyorder  [value]    Xi fitting function order in y
:yxorder  [value]    Eta fitting function order in x
:yyorder  [value]    Eta fitting function order in y
:xxterms  [n/h/f]    The xi fit cross terms type
:yxterms  [n/h/f]    The eta fit cross terms type
:maxiter  [value]    Maximum number of rejection iterations
:reject   [value]    K-sigma rejection threshold
.fi

The final fit is stored in the text database file \fIdatabase\fR file in a
format suitable for use by the CCSETWCS and CCTRAN tasks. Each fit is
stored in a record whose name is the name of the input image \fIimage\fR
if one is supplied, or the name of the input coordinate file \fIinput\fR.

If the \fIupdate\fR switch is "yes" and an input image is specified,
a new image wcs is derived from the linear component of the computed plate
solution and written to the image header. The numerical components of
the new image wcs are written to the standards FITS keywords, CRPIX, CRVAL,
and CD, with the actual values depending on the input pixel coordinate
system \fIpixsystem\fR. 
The FITS keywords which define the image celestial coordinate
system CTYPE, RADECSYS, EQUINOX, and MJD-WCS are set by the \fIinsystem\fR and
\fIprojection\fR parameters. 

The first four characters of the values of the ra / longitude and dec / latitude
axis CTYPE keywords specify the celestial coordinate system. They are set to
RA-- / DEC- for equatorial coordinate systems, ELON / ELAT for the ecliptic
coordinate system, GLON / GLAT for the galactic coordinate system, and
SLON / SLAT for the supergalactic coordinate system.

The second four characters of the values of the ra / longitude and dec /
latitude axis CTYPE keywords specify the sky projection geometry. IRAF
currently supports the TAN, SIN, ARC, AIT, CAR, CSC, GLS, MER, MOL, PAR, PCO,
QSC, STG, TSC, and ZEA standard projections, in which case the second 4
characters of CTYPE are set to  -TAN, -ARC, -SIN, etc. IRAF and CCMAP also
support the experiment TAN plus polynomials function driver. 

If the input celestial coordinate system is equatorial, the value of the
RADECSYS keyword specifies the fundamental equatorial system, EQUINOX
specifies the epoch of the mean place, and MJD-WCS specifies the epoch 
for which the mean place is correct. The permitted values of
RADECSYS are FK4, FK4-NO-E, FK5, ICRS, and GAPPT. EQUINOX is entered in years
and interpreted as a Besselian epoch for the FK4 system, a Julian epoch
for the FK5 system. The epoch of the wcs MJD-WCS is entered as 
a modified Julian date. Only those keywords necessary to defined the
new wcs are written. Any existing keywords which are not required to
define the wcs or are redundant are removed, with the exception of
DATE-OBS and EPOCH, which are left unchanged for obvious (DATE_OBS) and
historical (use of EPOCH keyword at NOAO) reasons.

If \fIverbose\fR is "yes", various pieces of useful information are
printed to the terminal as the task proceeds. If \fIresults\fR is set to a
file name then the original pixel and celestial coordinates, the fitted
celestial coordinates, and the residuals of the fit in arcseconds are written
to that file.

The transformation computed by the "general" fitting geometry is arbitrary
and does not correspond to a physically meaningful model. However the computed
coefficients for the linear term can be given a simple geometrical 
interpretation for all the fitting geometries as shown below.

.nf
	fitting geometry = general (linear term)
	     xi = a + b * x + c * y
	    eta = d + e * x + f * y

	fitting geometry = shift
	     xi = a + x
	    eta = d + y

	fitting geometry = xyscale
	     xi = a + b * x
	    eta = d + f * y

	fitting geometry = rotate
	     xi = a + b * x + c * y
	    eta = d + e * x + f * y
	    b * f - c * e = +/-1
	    b = f, c = -e or b = -f, c = e

	fitting geometry = rscale
	     xi = a + b * x + c * y
	    eta = d + e * x + f * y
	    b * f - c * e = +/- const
	    b = f, c = -e or b = -f, c = e

	fitting geometry = rxyscale
	     xi = a + b * x + c * y
	    eta = d + e * x + f * y
	    b * f - c * e = +/- const
.fi

The coefficients can be interpreted as follows. X0, y0, xi0, eta0
are the origins in the reference and input frames respectively. By definition
xi0 and eta0 are 0.0 and 0.0 respectively. Rotation and skew are the rotation
of the x and y axes and their deviation from perpendicularity respectively.
Xmag and ymag are the scaling factors in x and y in " / pixel and are assumed
to be positive by definition.

.nf
	general (linear term)
	    xrotation = rotation - skew / 2
	    yrotation = rotation + skew / 2
	    b = xmag * cos (xrotation)
	    c = ymag * sin (yrotation)
	    e = -xmag * sin (xrotation)
	    f = ymag * cos (yrotation)
	    a = xi0 - b * x0 - c * y0 = xshift
	    d = eta0 - e * x0 - f * y0 = yshift

	shift
	    xrotation = 0.0,  yrotation = 0.0
	    xmag = ymag = 1.0
	    b = 1.0
	    c = 0.0
	    e = 0.0
	    f = 1.0
	    a = xi0 - x0 = xshift
	    d = eta0 - y0 = yshift

	xyscale
	    xrotation 0.0 / 180.0 yrotation = 0.0
	    b = + /- xmag
	    c = 0.0
	    e = 0.0
	    f = ymag
	    a = xi0 - b * x0 = xshift
	    d = eta0 - f * y0 = yshift

	rscale
	    xrotation = rotation + 0 / 180, yrotation = rotation
	    mag = xmag = ymag
	    const = mag * mag
	    b = mag * cos (xrotation)
	    c = mag * sin (yrotation)
	    e = -mag * sin (xrotation)
	    f = mag * cos (yrotation)
	    a = xi0 - b * x0 - c * y0 = xshift
	    d = eta0 - e * x0 - f * y0 = yshift

	rxyscale
	    xrotation = rotation + 0 / 180, yrotation = rotation
	    const = xmag * ymag
	    b = xmag * cos (xrotation)
	    c = ymag * sin (yrotation)
	    e = -xmag * sin (xrotation)
	    f = ymag * cos (yrotation)
	    a = xi0 - b * x0 - c * y0 = xshift
	    d = eta0 - e * x0 - f * y0 = yshift
.fi

.ih
REFERENCES


Additional information on the IRAF world coordinate systems can be found in
the help pages for the WCSEDIT and WCRESET tasks.
Detailed documentation for the IRAF world coordinate system interface MWCS
can be found in the file "iraf$sys/mwcs/MWCS.hlp". This file can be
formatted and printed with the command "help iraf$sys/mwcs/MWCS.hlp fi+ |
lprint".

Details of the FITS header world coordinate system interface can
be found in the draft paper "World Coordinate Systems Representations Within the
FITS Format" by Hanisch and Wells, available from the iraf anonymous ftp
archive and the draft paper which supersedes it "Representations of Celestial
Coordinates in FITS" by Greisen and Calabretta available from the NRAO
anonymous ftp archives.

The spherical astronomy routines employed here are derived from the Starlink
SLALIB library provided courtesy of Patrick Wallace. These routines
are very well documented internally with extensive references provided
where appropriate. Interested users are encouraged to examine the routines
for this information. Type "help slalib" to get a listing of the SLALIB
routines, "help slalib opt=sys" to get a concise summary of the library,
and "help <routine>" to get a description of each routine's calling sequence,
required input and output, etc. An overview of the library can be found in the
paper "SLALIB - A Library of Subprograms", Starlink User Note 67.7
by P.T. Wallace, available from the Starlink archives.



.ih
EXAMPLES

1. Compute the plate scale for the test image dev$pix given the following
coordinate list. Set the tangent point to the mean of the input celestial
coordinates. Compute the plate scale interactively.

.nf
cl> type coords

13:29:47.297  47:13:37.52  327.50  410.38
13:29:37.406  47:09:09.18  465.50   62.10
13:29:38.700  47:13:36.23  442.01  409.65
13:29:55.424  47:10:05.15  224.35  131.20
13:30:01.816  47:12:58.79  134.37  356.33

cl> imcopy dev$pix pix

cl> hedit pix epoch 1987.26 

cl> ccmap coords coords.db image=pix xcol=3 ycol=4 lngcol=1 latcol=2

    ... a plot of the mapping function appears
    ... type ? to see the list of commands
    ... type x to see the xi fit residuals versus x
    ... type r to see the xi fit residuals versus y
    ... type y to see the eta fit residuals versus x
    ... type s to see the eta fit residuals versus y
    ... type g to return to the default plot
    ... type l to see the computed x and y scales in " / pixel
    ... type q to quit and save fit
.fi

2. Repeat example 2 but compute the fit non-interactively and list the
fitted values of the ra and dec and their residuals on the standard
output.

.nf
cl> ccmap coords coords.db image=pix results=STDOUT xcol=3 ycol=4 \
lngcol=1 latcol=2 inter- 

# Coords File: coords  Image: pix
#     Database: coords.db  Record: pix
# Refsystem: j2000  Coordinates: equatorial FK5
#     Equinox: J2000.000 Epoch: J2000.00000000 MJD: 51544.50000
# Insystem: j2000  Coordinates: equatorial FK5
#     Equinox: J2000.000 Epoch: J2000.00000000 MJD: 51544.50000
# Coordinate mapping status
#     XI fit ok.  ETA fit ok.
#     Ra/Dec or Long/Lat fit rms: 0.229  0.241   (arcsec  arcsec)
# Coordinate mapping parameters
#     Sky projection geometry: tan
#     Reference point: 13:29:48.129  47:11:53.37  (hours  degrees)
#     Reference point: 318.735  273.900  (pixels  pixels)
#     X and Y scale: 0.764  0.767  (arcsec/pixel  arcsec/pixel)
#     X and Y axis rotation: 179.110  358.958  (degrees  degrees)
# Wcs mapping status
#     Ra/Dec or Long/Lat wcs rms: 0.229  0.241   (arcsec  arcsec)
# 
#                     Input Coordinate Listing
# X      Y       Ra          Dec        Ra(fit)      Dec(fit)    Dra    Ddec
# 
327.5  410.4  13:29:47.30  47:13:37.5  13:29:47.28  47:13:37.9  0.128 -0.370
465.5   62.1  13:29:37.41  47:09:09.2  13:29:37.42  47:09:09.2 -0.191 -0.062
442.0  409.6  13:29:38.70  47:13:36.2  13:29:38.70  47:13:35.9  0.040  0.282
224.3  131.2  13:29:55.42  47:10:05.2  13:29:55.40  47:10:05.1  0.289  0.059
134.4  356.3  13:30:01.82  47:12:58.8  13:30:01.84  47:12:58.7 -0.267  0.091
.fi

3. Repeat the previous example but in this case input the position of the
tangent point in fk4 1950.0 coordinates.

.nf
cl> ccmap coords coords.db image=pix results=STDOUT xcol=3 ycol=4 lngcol=1 \
latcol=2 refpoint=user lngref=13:27:46.9 latref=47:27:16 refsystem=b1950.0 \
inter- 

# Coords File: coords  Image: pix
#     Database: coords.db  Record: pix
# Refsystem: b1950.0  Coordinates: equatorial FK4
#     Equinox: B1950.000 Epoch: B1950.00000000 MJD: 33281.92346
# Insystem: j2000  Coordinates: equatorial FK5
#     Equinox: J2000.000 Epoch: J2000.00000000 MJD: 51544.50000
# Coordinate mapping status
#     XI fit ok.  ETA fit ok.
#     Ra/Dec or Long/Lat fit rms: 0.229  0.241   (arcsec  arcsec)
# Coordinate mapping parameters
#     Sky projection geometry: tan
#     Reference point: 13:29:53.273  47:11:48.36  (hours  degrees)
#     Reference point: 250.256  266.309  (pixels  pixels)
#     X and Y scale: 0.764  0.767  (arcsec/pixel  arcsec/pixel)
#     X and Y axis rotation: 179.126  358.974  (degrees  degrees)
# Wcs mapping status
#     Ra/Dec or Long/Lat wcs rms: 0.229  0.241   (arcsec  arcsec)
#
#                     Input Coordinate Listing
#  X      Y       Ra         Dec        Ra(fit)      Dec(fit)    Dra    Ddec

327.5  410.4  13:29:47.30  47:13:37.5  13:29:47.28  47:13:37.9  0.128 -0.370
465.5   62.1  13:29:37.41  47:09:09.2  13:29:37.42  47:09:09.2 -0.191 -0.062
442.0  409.6  13:29:38.70  47:13:36.2  13:29:38.70  47:13:35.9  0.040  0.282
224.3  131.2  13:29:55.42  47:10:05.2  13:29:55.40  47:10:05.1  0.289  0.059
134.4  356.3  13:30:01.82  47:12:58.8  13:30:01.84  47:12:58.7 -0.267  0.091
.fi

Note the computed image scales are identical in examples 2 and 3 but that
the assumed position of the tangent point is different (the second estimate
is more accurate) producing different values for the pixel and celestial
coordinates of the reference point and small differences in the computed
rotation angles.
 
4. Repeat the previous example but in this case extract the position of the
tangent point in from the image header keywords RA, DEC, and EPOCH. 

.nf
cl> imheader pix l+ 

...
DATE-OBS= '05/04/87'            /  DATE DD/MM/YY
RA      = '13:29:24.00'         /  RIGHT ASCENSION
DEC     = '47:15:34.00'         /  DECLINATION
EPOCH   =              1987.26  /  EPOCH OF RA AND DEC
...

cl> ccmap coords coords.db image=pix results=STDOUT xcol=3 ycol=4 \
lngcol=1 latcol=2 refpoint=user lngref=RA latref=DEC refsystem=EPOCH \
inter-

# Coords File: coords  Image: pix
#     Database: coords.db  Record: pix
# Refsystem: fk4 b1987.26  Coordinates: equatorial FK4
#     Equinox: B1987.260 Epoch: B1987.26000000 MJD: 46890.84779
# Insystem: j2000  Coordinates: equatorial FK5
#     Equinox: J2000.000 Epoch: J2000.00000000 MJD: 51544.50000
# Coordinate mapping status
#     XI fit ok.  ETA fit ok.
#     Ra/Dec or Long/Lat fit rms: 0.229  0.241   (arcsec  arcsec)
# Coordinate mapping parameters
#     Sky projection geometry: tan
#     Reference point: 13:29:56.232  47:11:38.19  (hours  degrees)
#     Reference point: 211.035  252.447  (pixels  pixels)
#     X and Y scale: 0.764  0.767  (arcsec/pixel  arcsec/pixel)
#     X and Y axis rotation: 179.135  358.983  (degrees  degrees)
# Wcs mapping status
#     Ra/Dec or Long/Lat wcs rms: 0.229  0.241   (arcsec  arcsec)
# 
#                     Input Coordinate Listing
#  X      Y       Ra         Dec        Ra(fit)      Dec(fit)    Dra    Ddec

327.5  410.4  13:29:47.30  47:13:37.5  13:29:47.28  47:13:37.9  0.128 -0.370
465.5   62.1  13:29:37.41  47:09:09.2  13:29:37.42  47:09:09.2 -0.191 -0.062
442.0  409.6  13:29:38.70  47:13:36.2  13:29:38.70  47:13:35.9  0.040  0.282
224.3  131.2  13:29:55.42  47:10:05.2  13:29:55.40  47:10:05.1  0.289  0.059
134.4  356.3  13:30:01.82  47:12:58.8  13:30:01.84  47:12:58.7 -0.267  0.091

.fi

Note that the position of the tangent point is slightly different again but
that this does not have much affect on the fitted coordinates for this image.

5. Repeat the third example but this time store the computed world coordinate
system in the image header and check the header update with the imheader and
skyctran tasks.

.nf
cl> imheader pix l+ 
...
DATE-OBS= '05/04/87'            /  DATE DD/MM/YY
RA      = '13:29:24.00'         /  RIGHT ASCENSION
DEC     = '47:15:34.00'         /  DECLINATION
EPOCH   =              1987.26  /  EPOCH OF RA AND DEC
...

cl> ccmap coords coords.db image=pix results=STDOUT xcol=3 ycol=4  \
lngcol=1 latcol=2 refpoint=user lngref=13:27:46.9 latref=47:27:16    \
refsystem=b1950.0 inter- update+

# Coords File: coords  Image: pix
#     Database: coords.db  Record: pix
# Refsystem: b1950.0  Coordinates: equatorial FK4
#     Equinox: B1950.000 Epoch: B1950.00000000 MJD: 33281.92346
# Insystem: j2000  Coordinates: equatorial FK5
#     Equinox: J2000.000 Epoch: J2000.00000000 MJD: 51544.50000
# Coordinate mapping status
# Coordinate mapping status
#     XI fit ok.  ETA fit ok.
#     Ra/Dec or Long/Lat fit rms: 0.229  0.241   (arcsec  arcsec)
# Coordinate mapping parameters
#     Sky projection geometry: tan
#     Reference point: 13:29:53.273  47:11:48.36  (hours  degrees)
#     Reference point: 250.256  266.309  (pixels  pixels)
#     X and Y scale: 0.764  0.767  (arcsec/pixel  arcsec/pixel)
#     X and Y axis rotation: 179.126  358.974  (degrees  degrees)
# Wcs mapping status
#     Ra/Dec or Long/Lat wcs rms: 0.229  0.241   (arcsec  arcsec)
# Updating image header wcs
# 
# 
#                     Input Coordinate Listing
#  X      Y       Ra          Dec        Ra(fit)     Dec(fit)    Dra    Ddec

327.5  410.4  13:29:47.30  47:13:37.5  13:29:47.28  47:13:37.9  0.128 -0.370
465.5   62.1  13:29:37.41  47:09:09.2  13:29:37.42  47:09:09.2 -0.191 -0.062
442.0  409.6  13:29:38.70  47:13:36.2  13:29:38.70  47:13:35.9  0.040  0.282
224.3  131.2  13:29:55.42  47:10:05.2  13:29:55.40  47:10:05.1  0.289  0.059
134.4  356.3  13:30:01.82  47:12:58.8  13:30:01.84  47:12:58.7 -0.267  0.091

cl> imheader pix l+ 
...
DATE-OBS= '05/04/87'            /  DATE DD/MM/YY
RA      = '13:29:24.00'         /  RIGHT ASCENSION
DEC     = '47:15:34.00'         /  DECLINATION
EPOCH   =              1987.26  /  EPOCH OF RA AND DEC
...
RADECSYS= 'FK5     '
EQUINOX =                2000.
MJD-WCS =              51544.5
WCSDIM  =                    2
CTYPE1  = 'RA---TAN'
CTYPE2  = 'DEC--TAN'
CRVAL1  =     202.471969550729
CRVAL2  =     47.1967667056819
CRPIX1  =     250.255619786203
CRPIX2  =     266.308757328719
CD1_1   =  -2.1224568721716E-4
CD1_2   =  -3.8136850875221E-6
CD2_1   =  -3.2384199624421E-6
CD2_2   =  2.12935798198448E-4
LTM1_1  =                   1.
LTM2_2  =                   1.
WAT0_001= 'system=image'
WAT1_001= 'wtype=tan axtype=ra'
WAT2_001= 'wtype=tan axtype=dec'
...

cl> skyctran coords STDOUT "pix log" "pix world" lngcol=3 latcol=4 trans+

# Insystem: pix logical  Projection: TAN  Ra/Dec axes: 1/2
#     Coordinates: equatorial FK5 Equinox: J2000.000
#     Epoch: J2000.00000000 MJD: 51544.50000
# Outsystem: pix world  Projection: TAN  Ra/Dec axes: 1/2
#     Coordinates: equatorial FK5 Equinox: J2000.000
#     Epoch: J2000.00000000 MJD: 51544.50000

# Input file: incoords  Output file: STDOUT

13:29:47.297  47:13:37.52 13:29:47.284 47:13:37.89
13:29:37.406  47:09:09.18 13:29:37.425 47:09:09.24
13:29:38.700  47:13:36.23 13:29:38.696 47:13:35.95
13:29:55.424  47:10:05.15 13:29:55.396 47:10:05.09
13:30:01.816  47:12:58.79 13:30:01.842 47:12:58.70

.fi

Note that two versions of the rms values are printed, one for the fit
and one for the wcs fit. For the default fitting parameters these
two estimates should be identical. If a non-linear high order plate
solution is requested however, the image wcs will have lower precision
than the than the full plate solution, because only the linear component
of the plate solution is preserved in the wcs.

.ih
BUGS

.ih
SEE ALSO
cctran,ccsetwcs,skyctran,imctran,finder.tfinder,finder.tastrom
.endhelp