1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
.help imcctran Oct00 images.imcoords
.ih
NAME
imcctran -- convert between image celestial coordinate systems
.ih
USAGE
imcctran image outsystem
.ih
PARAMETERS
.ls image
The list of images whose celestial coordinate systems are to be converted. The
image celestial coordinate system must be one of the standard FITS celestial
coordinate systems: equatorial (FK4, FK4-NO-E, FK5, ICRS, or GAPPT), ecliptic,
galactic, or supergalactic.
.le
.ls outsystem
The input and output celestial coordinate systems. The options are
the following:
.ls <imagename> [wcs]
The celestial coordinate system is the world coordinate system of the image
<imagename> and the input or output pixel coordinates may be in the
"logical", "tv", "physical" or "world" coordinate systems. If wcs is not
specified "logical" is assumed, unless the input coordinates are read from the
image cursor, in which case "tv" is assumed. The image celestial coordinate
system must be one of the valid FITS celestial coordinate systems:
equatorial (FK4, FK4-NO-E, FK5, or GAPPT), ecliptic, galactic, or
supergalactic.
.le
.ls equinox [epoch]
The equatorial mean place post-IAU 1976 (FK5) system if equinox is a
Julian epoch, e.g. J2000.0 or 2000.0, or the equatorial mean place
pre-IAU 1976 system (FK4) if equinox is a Besselian epoch, e.g. B1950.0
or 1950.0. Julian equinoxes are prefixed by a J or j, Besselian equinoxes
by a B or b. Equinoxes without the J / j or B / b prefix are treated as
Besselian epochs if they are < 1984.0, Julian epochs if they are >= 1984.0.
Epoch is the epoch of the observation and may be a Julian
epoch, a Besselian epoch, or a Julian date. Julian epochs
are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to the epoch type of
equinox if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. If undefined epoch defaults to equinox.
.le
.ls icrs [equinox] [epoch]
The International Celestial Reference System where equinox is
a Julian or Besselian epoch e.g. J2000.0 or B1980.0.
Equinoxes without the J / j or B / b prefix are treated as Julian epochs.
The default value of equinox is J2000.0.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. If undefined epoch defaults to equinox.
.le
.ls fk5 [equinox] [epoch]
The equatorial mean place post-IAU 1976 (FK5) system where equinox is
a Julian or Besselian epoch e.g. J2000.0 or B1980.0.
Equinoxes without the J / j or B / b prefix are treated as Julian epochs.
The default value of equinox is J2000.0.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. If undefined epoch defaults to equinox.
.le
.ls fk4 [equinox] [epoch]
The equatorial mean place pre-IAU 1976 (FK4) system where equinox is a
Besselian or Julian epoch e.g. B1950.0 or J2000.0,
and epoch is the Besselian epoch, the Julian epoch, or the Julian date of the
observation.
Equinoxes without the J / j or B / b prefix are treated
as Besselian epochs. The default value of equinox is B1950.0. Epoch
is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. If undefined epoch defaults to equinox.
.le
.ls noefk4 [equinox] [epoch]
The equatorial mean place pre-IAU 1976 (FK4) system but without the E-terms
where equinox is a Besselian or Julian epoch e.g. B1950.0 or J2000.0,
and epoch is the Besselian epoch, the Julian epoch, or the Julian date of the
observation.
Equinoxes without the J / j or B / b prefix are treated
as Besselian epochs. The default value of equinox is B1950.0.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian day. If undefined epoch defaults to equinox.
.le
.ls apparent epoch
The equatorial geocentric apparent place post-IAU 1976 system where
epoch is the epoch of observation.
Epoch is a Besselian epoch, a Julian epoch or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian
epochs if the epoch value < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date.
.le
.ls ecliptic epoch
The ecliptic coordinate system where epoch is the epoch of observation.
Epoch is a Besselian epoch, a Julian epoch, or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian epochs
if the epoch values < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian day.
.le
.ls galactic [epoch]
The IAU 1958 galactic coordinate system.
Epoch is a Besselian epoch, a Julian epoch or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian
epochs if the epoch value < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. The default value of epoch is B1950.0.
.le
.ls supergalactic [epoch]
The deVaucouleurs supergalactic coordinate system.
Epoch is a Besselian epoch, a Julian epoch or a Julian date.
Julian epochs are prefixed by a J or j, Besselian epochs by a B or b.
Epochs without the J / j or B / b prefix default to Besselian
epochs if the epoch value < 1984.0, Julian epochs
if the epoch value <= 3000.0, otherwise epoch is interpreted as
a Julian date. The default value of epoch is B1950.0.
.le
In all the above cases fields in [] are optional with the defaults as
described. The epoch field for the fk5, icrs, galactic, and supergalactic
coordinate systems is required only if the input coordinates are in the
equatorial fk4, noefk4, fk5, or icrs systems and proper motions are defined.
.le
.ls nx = 10, ny = 10
The dimensions of the coordinate grid used to compute the rotation angle and,
optionally, the x and y magnification factors required to transform the input
image celestial coordinate system to the output celestial coordinate system.
.le
.ls longpole = no
If longpole = yes the zenithal projections ARC, SIN, STG, TAN, and ZEA
will be transformed by updating the longpole and latpole parameters instead
of rotating the CD matrix in the usual manner.
.le
.ls verbose = yes
Print messages about actions taken by the task on the standard output ?
.le
.ls update = yes
Update the image celestial coordinate system ?
.le
.ih
DESCRIPTION
IMCCTRAN converts the celestial coordinate system stored in the headers of the
input images \fIimage\fR to the celestial coordinate system specified by
\fIoutsystem\fR, and updates the input image header appropriately. The input
and output celestial coordinate systems must be one of the following:
equatorial, ecliptic, galactic, or supergalactic. The equatorial coordinate
systems must be one of: 1) FK4, the mean place pre-IAU 1976 system, 2) FK4-NO-E,
the same as FK4 but without the E-terms, 3) FK5, the mean place post-IAU 1976
system, 4), ICRS, the International Celestial Reference System, 5) GAPPT,
the geocentric apparent place in the post-IAU 1976 system.
The input celestial coordinate system is read from the input image header.
IMCCTRAN assumes that the celestial coordinate system is specified by the FITS
keywords CTYPE, CRPIX, CRVAL, CD (or alternatively CDELT / CROTA), RADECSYS,
EQUINOX (or EPOCH), MJD-WCS (or MJD-OBS, or DATE-OBS). USERS SHOULD TAKE NOTE
THAT MJD-WCS IS CURRENTLY NEITHER A STANDARD OR A PROPOSED FITS STANDARD
KEYWORD. HOWEVER IT OR SOMETHING SIMILAR, IS REQUIRED TO SPECIFY THE EPOCH OF
THE COORDINATE SYSTEM WHICH MAY BE DIFFERENT FROM THE EPOCH OF THE OBSERVATION.
The first four characters of the values of the ra / longitude and dec / latitude
axis CTYPE keywords specify the celestial coordinate system. The currently
permitted values of CTYPE[1:4] are RA-- / DEC- for equatorial coordinate
systems, ELON / ELAT for the ecliptic coordinate system, GLON / GLAT for the
galactic coordinate system, and SLON / SLAT for the supergalactic coordinate
system.
The second four characters of the values of the ra / longitude and dec /
latitude axis CTYPE keywords specify the sky projection geometry. IRAF
currently supports the AIT, ARC, CAR, CSC, GLS, MER, PAR, PCO, QSC,
SIN, STG, TAN, TSC, and ZEA geometries as well as two internal projection
geometries TNX, and ZPX. Consequently the currently permitted values of
CTYPE[5:8] are -AIT, -ARC, -CAR, -CSC, -GLS, -MER, -PAR, -PCO, -QSC,
-SIN, -STG, -TAN, -TSC, -ZEA as well as -ZPX and -TNX.
If the input image celestial coordinate system is equatorial, the value of the
RADECSYS keyword specifies which fundamental equatorial system is to be
considered. The permitted values of RADECSYS are FK4, FK4-NO-E, FK5, ICRS,
and GAPPT. If the RADECSYS keyword is not present in the image header, the
values of the EQUINOX / EPOCH keywords (in that order of precedence) are used
to determine the fundamental equatorial coordinate system. EQUINOX or EPOCH
contain the epoch of the mean place and equinox for the FK4, FK4-NO-E, FK5,
and ICRS systems (e.g 1950.0 or 2000.0). The default equatorial system is
FK4 if EQUINOX or EPOCH < 1984.0, FK5 if EQUINOX or EPOCH >= 1984.0, and FK5
if RADECSYS, EQUINOX, and EPOCH are undefined. If RADECSYS is defined but
EQUINOX and EPOCH are not, the equinox defaults to 1950.0 for the FK4 and
FK4-NO-E systems, and 2000.0 for the FK5 and ICRS systems. The equinox value is
interpreted as a Besselian epoch for the FK4 and FK4-NO-E systems, and as a
Julian epoch for the FK5 and ICRS systems. Users are
strongly urged to use the EQUINOX keyword in preference to the EPOCH keyword,
if they must enter their own equinox values into the image header. The FK4 and
FK4-NO-E systems are not inertial and therefore also require the epoch of the
observation (the time when the mean place was correct), in addition to the
equinox. The epoch is specified, in order of precedence, by the values of the
keywords MJD-WCS or MJD-OBS (which contain the modified Julian date, JD -
2400000.5, of the coordinate system), or the DATE-OBS keyword (which contains
the date of the observation in the form DD/MM/YY, CCYY-MM-DD, or
CCYY-MM-DDTHH:MM:SS.S). As the latter quantity may
only be accurate to a day, the MJD-WCS or MJD-OBS specification is preferred.
If all 3 keywords are absent the epoch defaults to the value of equinox.
Equatorial coordinates in the GAPPT system require only the specification
of the epoch of observation which is supplied via the MJD-WCS, MJD-OBS,
or DATE-OBS keywords (in that order of precedence) as for the FK4 and
FK4-NO-E system.
If the input image celestial coordinate system is ecliptic the mean ecliptic
and equinox of date are required. These are supplied via the MJD-WCS, MJD-OBS,
or DATE-OBS keywords (in that order or precedence) as for the equatorial FK4,
FK4-NO-E, and GAPPT systems.
The output coordinate system is specified by the \fIoutsystem\fR parameter
as described in the PARAMETERS section.
If an error is encountered when decoding the input or output world coordinate
systems, an error message is printed on the standard output (if \fIverbose\fR
is "yes"), and the input image left unmodified.
If the input projection is one of the zenithal projections TAN, SIN, STG,
ARC, or ZEA, then the header coordinate transformation can be preformed by
transforming the CRVAL parameters and rotating the CD matrix as described in
detail below. Otherwise the CRVAL values are transformed, the CD matrix is
left unmodified, and the LONGPOLE and LATPOLE parameters required to perform
the rotation are computed. If \fIlongpole\fR is yes then the zenithal
coordinate systems will also be transformed using LONGPOLE and LATPOLE. At
present IRAF looks for longpole and latpole parameters in the appropriate
WATN_* keywords. If these are undefined the appropriate default values for
each projection are assumed and new values are written to the WATN_* keywords.
The new image celestial coordinate system is computed as follows. First a
grid of \fInx\fR by \fIny\fR pixel and celestial coordinates, evenly spaced
over the input image, is generated using the input image celestial coordinate
system. Next these input celestial coordinates are transformed to coordinates
in the output celestial coordinate system. Next the input celestial coordinates
of the reference point (stored in degrees in the input image CRVAL keywords)
are transformed to coordinates in the output celestial coordinate system,
and new x and y pixel coordinates are computed using the transformed reference
point coordinates but the original input CD matrix. The differences
between the predicted and initial x and y pixel coordinates are used to
compute the x and y axis rotation angles and the x and y magnification factors
required to transform the original CD matrix to the correct new CD matrix.
The process is shown schematically below.
.nf
1. x,y(input grid) -> ra,dec(input grid)
2. ra,dec(input grid) -> ra,dec(output grid)
3. ra_ref,dec_ref(input) -> ra_ref,dec_ref(output)
4. ra,dec(output grid) -> x,y(predicted grid)
5. x,y(input grid) -> F -> x,y(predicted grid)
6. cd matrix(input) -> F -> cd matrix(output)
.fi
F is the fitted function of the x and y axis rotation angles and the
x and y scaling factors required to match the input x and y values to the
predicted x and y values.
For most celestial coordinate transformations the fitted x and y scale factors
will be very close to 1.0 and the x and y rotation angles will be almost
identical. However small deviations from unity scale factors and identical
x and y axis rotation angles do occur when transforming coordinates systems
with the skewed axes.
The precision of the transformations is usually very high, on the order
of 10E-10 to 10E-11 in most cases. However conversions to and from the FK4
equatorial system are less precise as these transformations
involve the addition and subtraction of the elliptical aberration
or E-terms. In this case the x and y scale factors correct for the first
order E-terms and do significantly improve the precision of the coordinate
transformation. The quadratic terms, i.e. terms in xy, x**2, and y**2
however are not corrected for, and their absence does diminish the precision
of the transformation coordinate transformation. For most practical purposes
this loss of precision is insignificant.
After the fit is completed, the celestial coordinates of the reference point
in dd:mm:ss.s in the old and new systems, the rotation angle in degrees, the x
and y scaling factors, and an estimate of the rms error of the x and y
coordinate transformation are printed on the standard output.
If \fIupdate\fR is yes, then the image header parameters CRVAL, CD,
CTYPE, RADECSYS, EQUINOX, EPOCH, and MJD-WCS are modified, deleted, or
added as appropriate. The position of the reference pixel in the
image (stored in the CRPIX keywords), and the sky projection geometry, e.g.
TAN, SIN, ARC, ETC are unchanged.
USERS NEED TO BE AWARE THAT THE IRAF IMAGE WORLD COORDINATE SYSTEM
CURRENTLY (IRAF VERSIONS 2.10.4 PATCH 2 AND EARLIER) SUPPORTS ONLY THE
EQUATORIAL SYSTEM (CTYPE (ra axis) = "RA--XXXX" CTYPE (dec axis) = "DEC-XXXX")
WHERE XXXX IS THE PROJECTION TYPE, EVEN THOUGH THE IMCCTRAN TASK
SUPPORTS GALACTIC, ECLIPTIC, AND SUPERGALACTIC COORDINATES. IMCCTRAN will
update the image correctly for non-equatorial systems, but IRAF will
not be able to read these transformed image coordinate systems correctly.
USERS SHOULD ALSO REALIZE THAT IMAGE WORLD COORDINATE SYSTEM REPRESENTATION
IN FITS IS STILL IN THE DRAFT STAGE. ALTHOUGH IMCCTRAN TRIES TO CONFORM TO
THE CURRENT DRAFT PROPOSAL AS MUCH AS POSSIBLE, WHERE NO ADOPTED STANDARDS
CURRENTLY EXIST, THE FINAL FITS STANDARD MAY DIFFER FROM THE ONE ADOPTED HERE.
.ih
REFERENCES
Additional information on the IRAF world coordinate systems can be found in
the help pages for the WCSEDIT and WCRESET tasks.
Detailed documentation for the IRAF world coordinate system interface MWCS
can be found in the file "iraf$sys/mwcs/MWCS.hlp". This file can be
formatted and printed with the command "help iraf$sys/mwcs/MWCS.hlp fi+ |
lprint".
Details of the FITS header world coordinate system interface can
be found in the draft paper "World Coordinate Systems Representations Within the
FITS Format" by Hanisch and Wells, available from the iraf anonymous ftp
archive and the draft paper which supersedes it "Representations of Celestial
Coordinates in FITS" by Greisen and Calabretta available from the NRAO
anonymous ftp archives.
The spherical astronomy routines employed here are derived from the Starlink
SLALIB library provided courtesy of Patrick Wallace. These routines
are very well documented internally with extensive references provided
where appropriate. Interested users are encouraged to examine the routines
for this information. Type "help slalib" to get a listing of the SLALIB
routines, "help slalib opt=sys" to get a concise summary of the library,
and "help <routine>" to get a description of each routine's calling sequence,
required input and output, etc. An overview of the library can be found in the
paper "SLALIB - A Library of Subprograms", Starlink User Note 67.7
by P.T. Wallace, available from the Starlink archives.
.ih
EXAMPLES
[1]. Precess the equatorial FK5 J2000 celestial coordinate system of the
input 512 by 512 pixel square input image to J1975.0.
.nf
cl> imcctran image j1975.0
INPUT IMAGE: image
Insystem: image logical Projection: TAN Ra/Dec axes: 1/2
Coordinates: equatorial FK5 Equinox: J2000.000
Epoch: J1987.25667351 MJD: 46890.00000
Outsystem: j1975 Coordinates: equatorial FK5
Equinox: J1975.000 Epoch: J1975.00000000 MJD: 42413.25000
Crval1,2: 201:56:43.5, 47:27:16.0 -> 201:40:53.8, 47:35:01.2 dd:mm:ss.s
Scaling: Xmag: 1.000000 Ymag: 1.000000 Xrot: 359.923 Yrot: 359.923 degrees
Rms: X fit: 8.465123E-11 pixels Y fit: 5.204446E-11 pixels
.fi
Before the transformation the image coordinate system looked like the following.
.nf
...
EPOCH = 2000
DATE-OBS= '05/04/87'
CRPIX1 = 257.75
CRPIX2 = 258.93
CRVAL1 = 201.94541667302
CRVAL2 = 47.45444
CDELT1 = -2.1277777E-4
CDELT2 = 2.1277777E-4
CTYPE1 = 'RA---TAN'
CTYPE2 = 'DEC--TAN'
...
.fi
After the transformation the header looks like the following.
.nf
...
DATE-OBS= '05/04/87'
CRPIX1 = 257.75
CRPIX2 = 258.93
CRVAL1 = 201.681616387759
CRVAL2 = 47.583668865029
CTYPE1 = 'RA---TAN'
CTYPE2 = 'DEC--TAN'
RADECSYS= 'FK5 '
EQUINOX = 1975.
MJD-WCS = 42413.25
WCSDIM = 2
CD1_1 = -2.1277757990523E-4
CD1_2 = 2.84421945372844E-7
CD2_1 = 2.84421945363011E-7
CD2_2 = 2.12777579905235E-4
LTM1_1 = 1.
LTM2_2 = 1.
WAT0_001= 'system=image'
WAT1_001= 'wtype=tan axtype=ra'
WAT2_001= 'wtype=tan axtype=dec'
...
.fi
Note the rms of the x and y fits is on the order 10.0e-10 to 10.0e-11 which
is the expected numerical precision of the transformation.
[2]. Convert the input image used in example 1 to the BFK4 1950.0 system.
.nf
cl> imcctran image B1950.0
INPUT IMAGE: image
Insystem: image logical Projection: TAN Ra/Dec axes: 1/2
Coordinates: equatorial FK5 Equinox: J2000.000
Epoch: J1987.25667351 MJD: 46890.00000
Outsystem: B1950 Coordinates: equatorial FK4
Equinox: B1950.000 Epoch: B1950.00000000 MJD: 33281.92346
Crval1,2: 201:56:43.5, 47:27:16.0 -> 201:25:02.3, 47:42:47.1 dd:mm:ss.s
Scaling: Xmag: 0.999999 Ymag: 0.999999 Xrot: 359.848 Yrot: 359.848 degrees
Rms: X fit: 1.302837E-7 pixels Y fit: 8.545616E-8 pixels
.fi
Note that precision of the transformation is still good but is significantly
less that the precision of the previous example. This is due to the fact
that the quadratic terms in the E-term computation are not included in the
transformation.
The transformed image header in this case looks like the following.
.nf
...
DATE-OBS= '05/04/87'
CRPIX1 = 257.75
CRPIX2 = 258.93
CRVAL1 = 201.417300629944
CRVAL2 = 47.7130749603847
CTYPE1 = 'RA---TAN'
CTYPE2 = 'DEC--TAN'
RADECSYS= 'FK4 '
EQUINOX = 1950.
MJD-WCS = 33281.92345905
WCSDIM = 2
CD1_1 = -2.1277680505752E-4
CD1_2 = 5.66226465943254E-7
CD2_1 = 5.66226470798410E-7
CD2_2 = 2.12776805056766E-4
LTM1_1 = 1.
LTM2_2 = 1.
WAT0_001= 'system=image'
WAT1_001= 'wtype=tan axtype=ra'
WAT2_001= 'wtype=tan axtype=dec'
...
.fi
[3]. Transform the celestial coordinate system of the input image used in
examples 1 and 2 to the galactic coordinate system.
.nf
cl> imcctran image galactic
INPUT IMAGE: image
Insystem: image logical Projection: TAN Ra/Dec axes: 1/2
Coordinates: equatorial FK5 Equinox: J2000.000
Epoch: J1987.25667351 MJD: 46890.00000
Outsystem: galactic Coordinates: galactic
MJD: 33281.92346 Epoch: J1949.99979044 B1950.00000000
rval1,2: 201:56:43.5, 47:27:16.0 -> 106:01:19.4, 68:27:46.1 dd:mm:ss.s
Scaling: Xmag: 1.000000 Ymag: 1.000000 Xrot: 202.510 Yrot: 202.510 degrees
Rms: X fit: 9.087450E-11 pixels Y fit: 3.815443E-11 pixels
.fi
The transformed header looks like the following.
.nf
...
DATE-OBS= '05/04/87'
CRPIX1 = 257.75
CRPIX2 = 258.93
CRVAL1 = 106.022047915293
CRVAL2 = 68.4627934475432
CTYPE1 = 'GLON-TAN'
CTYPE2 = 'GLAT-TAN'
MJD-WCS = 33281.92345905
WCSDIM = 2
CD1_1 = 1.96567112095654E-4
CD1_2 = 8.14601120181094E-5
CD2_1 = 8.14601120174619E-5
CD2_2 = -1.9656711209802E-4
LTM1_1 = 1.
LTM2_2 = 1.
WAT0_001= 'system=image'
WAT1_001= 'wtype=tan axtype=glon'
WAT2_001= 'wtype=tan axtype=glat'
...
.fi
Users should not that although imcctran can write a legal galactic coordinate
system to the image header, it and other iraf tasks cannot currently
read this coordinate system.
[4]. Repeat the previous example but don't update the image header.
.nf
cl> imcctran image galactic update-
INPUT IMAGE: image
Insystem: image logical Projection: TAN Ra/Dec axes: 1/2
Coordinates: equatorial FK5 Equinox: J2000.000
Epoch: J1987.25667351 MJD: 46890.00000
Outsystem: galactic Coordinates: galactic
MJD: 33281.92346 Epoch: J1949.99979044 B1950.00000000
Current wcs
Axis 1 2
Crval 201.9454 47.4544
Crpix 257.75 258.93
Cd 1 -2.128E-4 0.
Cd 2 0. 2.128E-4
New wcs
Axis 1 2
Crval 106.0220 68.4628
Crpix 257.75 258.93
Cd 1 1.966E-4 8.146E-5
Cd 2 8.146E-5 -1.966E-4
Crval1,2: 201:56:43.5, 47:27:16.0 -> 106:01:19.4, 68:27:46.1 dd:mm:ss.s
Scaling: Xmag: 1.000000 Ymag: 1.000000 Xrot: 202.510 Yrot: 202.510 degrees
Rms: X fit: 9.087450E-11 pixels Y fit: 3.815443E-11 pixels
.fi
[5]. Repeat example 1 and check the accuracy of the results by using the
skyctran task on the original image and on the transformed image.
.nf
cl> type coords
1.0 1.0
512.0 1.0
512.0 512.0
1.0 512.0
cl> skyctran coords STDOUT "image logical" J1975.0
Insystem: image logical Projection: TAN Ra/Dec axes: 1/2
Coordinates: equatorial FK5 Equinox: J2000.000
Epoch: J1987.25667351 MJD: 46890.00000
Outsystem: j1975 Coordinates: equatorial FK5
Equinox: J1975.000 Epoch: J1975.00000000 MJD: 42413.25000
Input file: coords Output file: STDOUT
1.0 1.0 13:27:02.9797 47:31:43.269
512.0 1.0 13:26:24.3330 47:31:43.793
512.0 512.0 13:26:24.3448 47:38:15.219
1.0 512.0 13:27:03.0718 47:38:14.693
cl> imcctran image j1975.0
cl> skyctran coords STDOUT "image logical" "image world"
Insystem: image logical Projection: TAN Ra/Dec axes: 1/2
Coordinates: equatorial FK5 Equinox: J1975.000
Epoch: J1975.00000000 MJD: 42413.25000
Outsystem: image world Projection: TAN Ra/Dec axes: 1/2
Coordinates: equatorial FK5 Equinox: J1975.000
Epoch: J1975.00000000 MJD: 42413.25000
Input file: coords Output file: STDOUT
1.0 1.0 13:27:02.9797 47:31:43.269
512.0 1.0 13:26:24.3330 47:31:43.793
512.0 512.0 13:26:24.3448 47:38:15.219
1.0 512.0 13:27:03.0718 47:38:14.693
.fi
.ih
TIME REQUIREMENTS
.ih
BUGS
At present IRAF requires that the LONGPOLE and or LATPOLE keywords be
defined in the appropriate WAT_* keywords, e.g. WAT1_* and WAT2_* for
a 2D image. If these are not present then default values are assumed.
The new values are computed and added to the WAT1_* and WAT2_* keywords.
At present the experimental TNX and ZPX projections cannot be transformed
with precision. Users should use the SKYCTRAN task to transform individual
coordinate pairs.
.ih
SEE ALSO
setjd,precess,galactic,xray.xspatial.skypix,stsdas.toolbox.tools.tprecess
.endhelp
|