1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <imhdr.h>
# BLKRP -- Block replicate an image.
procedure blkrpd (in, out, blkfac)
pointer in # Input IMIO pointer
pointer out # Output IMIO pointer
int blkfac[ARB] # Block replication factors
int i, j, ndim, nin, nout
pointer sp, buf, buf1, buf2, buf3, v1, v2, v3, ptrin, ptrout
pointer imgl1d(), impl1d(), imgnld(), impnld()
begin
call smark (sp)
ndim = IM_NDIM(in)
nin = IM_LEN(in, 1)
nout = nin * blkfac[1]
IM_LEN(out,1) = nout
if (ndim == 1) {
# For one dimensional images do the replication directly.
buf1 = imgl1d (in)
buf2 = impl1d (out)
ptrin = buf1
ptrout = buf2
do i = 1, nin {
do j = 1, blkfac[1] {
Memd[ptrout] = Memd[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
} else {
# For higher dimensional images use line access routines.
do i = 2, ndim
IM_LEN(out,i) = IM_LEN(in,i) * blkfac[i]
# Allocate memory.
call salloc (buf, nout, TY_DOUBLE)
call salloc (v1, IM_MAXDIM, TY_LONG)
call salloc (v2, IM_MAXDIM, TY_LONG)
call salloc (v3, IM_MAXDIM, TY_LONG)
# Initialize the input line vector and the output section vectors.
call amovkl (long(1), Meml[v1], IM_MAXDIM)
call amovkl (long(1), Meml[v2], IM_MAXDIM)
call amovkl (long(1), Meml[v3], IM_MAXDIM)
# For each output line compute a block replicated line from the
# input image. If the line replication factor is greater than
# 1 then simply repeat the input line. This algorithm is
# sequential in both the input and output image though the
# input image will be recycled for each repetition of higher
# dimensions.
while (impnld (out, buf2, Meml[v2]) != EOF) {
# Get the input vector corresponding to the output line.
do i = 2, ndim
Meml[v1+i-1] = (Meml[v3+i-1] - 1) / blkfac[i] + 1
i = imgnld (in, buf1, Meml[v1])
# Block replicate the columns.
if (blkfac[1] == 1)
buf3 = buf1
else {
ptrin = buf1
ptrout = buf
do i = 1, nin {
do j = 1, blkfac[1] {
Memd[ptrout] = Memd[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
buf3 = buf
}
# Copy the input line to the output line.
call amovd (Memd[buf3], Memd[buf2], nout)
# Repeat for each repetition of the input line.
for (i=2; i <= blkfac[2]; i=i+1) {
j = impnld (out, buf2, Meml[v2])
call amovd (Memd[buf3], Memd[buf2], nout)
}
call amovl (Meml[v2], Meml[v3], IM_MAXDIM)
}
}
call sfree (sp)
end
# BLKRP -- Block replicate an image.
procedure blkrpl (in, out, blkfac)
pointer in # Input IMIO pointer
pointer out # Output IMIO pointer
int blkfac[ARB] # Block replication factors
int i, j, ndim, nin, nout
pointer sp, buf, buf1, buf2, buf3, v1, v2, v3, ptrin, ptrout
pointer imgl1l(), impl1l(), imgnll(), impnll()
begin
call smark (sp)
ndim = IM_NDIM(in)
nin = IM_LEN(in, 1)
nout = nin * blkfac[1]
IM_LEN(out,1) = nout
if (ndim == 1) {
# For one dimensional images do the replication directly.
buf1 = imgl1l (in)
buf2 = impl1l (out)
ptrin = buf1
ptrout = buf2
do i = 1, nin {
do j = 1, blkfac[1] {
Meml[ptrout] = Meml[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
} else {
# For higher dimensional images use line access routines.
do i = 2, ndim
IM_LEN(out,i) = IM_LEN(in,i) * blkfac[i]
# Allocate memory.
call salloc (buf, nout, TY_LONG)
call salloc (v1, IM_MAXDIM, TY_LONG)
call salloc (v2, IM_MAXDIM, TY_LONG)
call salloc (v3, IM_MAXDIM, TY_LONG)
# Initialize the input line vector and the output section vectors.
call amovkl (long(1), Meml[v1], IM_MAXDIM)
call amovkl (long(1), Meml[v2], IM_MAXDIM)
call amovkl (long(1), Meml[v3], IM_MAXDIM)
# For each output line compute a block replicated line from the
# input image. If the line replication factor is greater than
# 1 then simply repeat the input line. This algorithm is
# sequential in both the input and output image though the
# input image will be recycled for each repetition of higher
# dimensions.
while (impnll (out, buf2, Meml[v2]) != EOF) {
# Get the input vector corresponding to the output line.
do i = 2, ndim
Meml[v1+i-1] = (Meml[v3+i-1] - 1) / blkfac[i] + 1
i = imgnll (in, buf1, Meml[v1])
# Block replicate the columns.
if (blkfac[1] == 1)
buf3 = buf1
else {
ptrin = buf1
ptrout = buf
do i = 1, nin {
do j = 1, blkfac[1] {
Meml[ptrout] = Meml[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
buf3 = buf
}
# Copy the input line to the output line.
call amovl (Meml[buf3], Meml[buf2], nout)
# Repeat for each repetition of the input line.
for (i=2; i <= blkfac[2]; i=i+1) {
j = impnll (out, buf2, Meml[v2])
call amovl (Meml[buf3], Meml[buf2], nout)
}
call amovl (Meml[v2], Meml[v3], IM_MAXDIM)
}
}
call sfree (sp)
end
# BLKRP -- Block replicate an image.
procedure blkrpr (in, out, blkfac)
pointer in # Input IMIO pointer
pointer out # Output IMIO pointer
int blkfac[ARB] # Block replication factors
int i, j, ndim, nin, nout
pointer sp, buf, buf1, buf2, buf3, v1, v2, v3, ptrin, ptrout
pointer imgl1r(), impl1r(), imgnlr(), impnlr()
begin
call smark (sp)
ndim = IM_NDIM(in)
nin = IM_LEN(in, 1)
nout = nin * blkfac[1]
IM_LEN(out,1) = nout
if (ndim == 1) {
# For one dimensional images do the replication directly.
buf1 = imgl1r (in)
buf2 = impl1r (out)
ptrin = buf1
ptrout = buf2
do i = 1, nin {
do j = 1, blkfac[1] {
Memr[ptrout] = Memr[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
} else {
# For higher dimensional images use line access routines.
do i = 2, ndim
IM_LEN(out,i) = IM_LEN(in,i) * blkfac[i]
# Allocate memory.
call salloc (buf, nout, TY_REAL)
call salloc (v1, IM_MAXDIM, TY_LONG)
call salloc (v2, IM_MAXDIM, TY_LONG)
call salloc (v3, IM_MAXDIM, TY_LONG)
# Initialize the input line vector and the output section vectors.
call amovkl (long(1), Meml[v1], IM_MAXDIM)
call amovkl (long(1), Meml[v2], IM_MAXDIM)
call amovkl (long(1), Meml[v3], IM_MAXDIM)
# For each output line compute a block replicated line from the
# input image. If the line replication factor is greater than
# 1 then simply repeat the input line. This algorithm is
# sequential in both the input and output image though the
# input image will be recycled for each repetition of higher
# dimensions.
while (impnlr (out, buf2, Meml[v2]) != EOF) {
# Get the input vector corresponding to the output line.
do i = 2, ndim
Meml[v1+i-1] = (Meml[v3+i-1] - 1) / blkfac[i] + 1
i = imgnlr (in, buf1, Meml[v1])
# Block replicate the columns.
if (blkfac[1] == 1)
buf3 = buf1
else {
ptrin = buf1
ptrout = buf
do i = 1, nin {
do j = 1, blkfac[1] {
Memr[ptrout] = Memr[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
buf3 = buf
}
# Copy the input line to the output line.
call amovr (Memr[buf3], Memr[buf2], nout)
# Repeat for each repetition of the input line.
for (i=2; i <= blkfac[2]; i=i+1) {
j = impnlr (out, buf2, Meml[v2])
call amovr (Memr[buf3], Memr[buf2], nout)
}
call amovl (Meml[v2], Meml[v3], IM_MAXDIM)
}
}
call sfree (sp)
end
# BLKRP -- Block replicate an image.
procedure blkrps (in, out, blkfac)
pointer in # Input IMIO pointer
pointer out # Output IMIO pointer
int blkfac[ARB] # Block replication factors
int i, j, ndim, nin, nout
pointer sp, buf, buf1, buf2, buf3, v1, v2, v3, ptrin, ptrout
pointer imgl1s(), impl1s(), imgnls(), impnls()
begin
call smark (sp)
ndim = IM_NDIM(in)
nin = IM_LEN(in, 1)
nout = nin * blkfac[1]
IM_LEN(out,1) = nout
if (ndim == 1) {
# For one dimensional images do the replication directly.
buf1 = imgl1s (in)
buf2 = impl1s (out)
ptrin = buf1
ptrout = buf2
do i = 1, nin {
do j = 1, blkfac[1] {
Mems[ptrout] = Mems[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
} else {
# For higher dimensional images use line access routines.
do i = 2, ndim
IM_LEN(out,i) = IM_LEN(in,i) * blkfac[i]
# Allocate memory.
call salloc (buf, nout, TY_SHORT)
call salloc (v1, IM_MAXDIM, TY_LONG)
call salloc (v2, IM_MAXDIM, TY_LONG)
call salloc (v3, IM_MAXDIM, TY_LONG)
# Initialize the input line vector and the output section vectors.
call amovkl (long(1), Meml[v1], IM_MAXDIM)
call amovkl (long(1), Meml[v2], IM_MAXDIM)
call amovkl (long(1), Meml[v3], IM_MAXDIM)
# For each output line compute a block replicated line from the
# input image. If the line replication factor is greater than
# 1 then simply repeat the input line. This algorithm is
# sequential in both the input and output image though the
# input image will be recycled for each repetition of higher
# dimensions.
while (impnls (out, buf2, Meml[v2]) != EOF) {
# Get the input vector corresponding to the output line.
do i = 2, ndim
Meml[v1+i-1] = (Meml[v3+i-1] - 1) / blkfac[i] + 1
i = imgnls (in, buf1, Meml[v1])
# Block replicate the columns.
if (blkfac[1] == 1)
buf3 = buf1
else {
ptrin = buf1
ptrout = buf
do i = 1, nin {
do j = 1, blkfac[1] {
Mems[ptrout] = Mems[ptrin]
ptrout = ptrout + 1
}
ptrin = ptrin + 1
}
buf3 = buf
}
# Copy the input line to the output line.
call amovs (Mems[buf3], Mems[buf2], nout)
# Repeat for each repetition of the input line.
for (i=2; i <= blkfac[2]; i=i+1) {
j = impnls (out, buf2, Meml[v2])
call amovs (Mems[buf3], Mems[buf2], nout)
}
call amovl (Meml[v2], Meml[v3], IM_MAXDIM)
}
}
call sfree (sp)
end
|