1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <error.h>
include <imhdr.h>
include <imset.h>
include <math/iminterp.h>
define NYOUT 16 # number of lines output at once
define NMARGIN 3 # number of boundary pixels required
define NMARGIN_SPLINE3 16 # number of spline boundary pixels required
# T_IMSHIFT -- Shift a 2-D image by an arbitrary amount in X and Y, using
# boundary extension to preserve the image size.
procedure t_imshift()
pointer imtlist1 # Input image list
pointer imtlist2 # Output image list
pointer image1 # Input image
pointer image2 # Output image
pointer imtemp # Temporary file
pointer sfile # Text file containing list of shifts
pointer interpstr # Interpolant string
int list1, list2, boundary_type, ixshift, iyshift, nshifts, interp_type
pointer sp, str, xs, ys, im1, im2, sf, mw
real constant, shifts[2]
double txshift, tyshift, xshift, yshift
bool fp_equald(), envgetb()
int imtgetim(), imtlen(), clgwrd(), strdic(), open(), ish_rshifts()
pointer immap(), imtopen(), mw_openim()
real clgetr()
double clgetd()
errchk ish_ishiftxy, ish_gshiftxy, mw_openim, mw_saveim, mw_shift
begin
call smark (sp)
call salloc (imtlist1, SZ_LINE, TY_CHAR)
call salloc (imtlist2, SZ_LINE, TY_CHAR)
call salloc (image1, SZ_LINE, TY_CHAR)
call salloc (image2, SZ_LINE, TY_CHAR)
call salloc (imtemp, SZ_LINE, TY_CHAR)
call salloc (sfile, SZ_FNAME, TY_CHAR)
call salloc (interpstr, SZ_FNAME, TY_CHAR)
call salloc (str, SZ_LINE, TY_CHAR)
# Get task parameters.
call clgstr ("input", Memc[imtlist1], SZ_FNAME)
call clgstr ("output", Memc[imtlist2], SZ_FNAME)
call clgstr ("shifts_file", Memc[sfile], SZ_FNAME)
# Get the 2-D interpolation parameters.
call clgstr ("interp_type", Memc[interpstr], SZ_FNAME)
interp_type = strdic (Memc[interpstr], Memc[str], SZ_LINE,
II_BFUNCTIONS)
boundary_type = clgwrd ("boundary_type", Memc[str], SZ_LINE,
",constant,nearest,reflect,wrap,")
if (boundary_type == BT_CONSTANT)
constant = clgetr ("constant")
# Open the input and output image lists.
list1 = imtopen (Memc[imtlist1])
list2 = imtopen (Memc[imtlist2])
if (imtlen (list1) != imtlen (list2)) {
call imtclose (list1)
call imtclose (list2)
call error (1, "Number of input and output images not the same.")
}
# Determine the source of the shifts.
if (Memc[sfile] != EOS) {
sf = open (Memc[sfile], READ_ONLY, TEXT_FILE)
call salloc (xs, imtlen (list1), TY_DOUBLE)
call salloc (ys, imtlen (list1), TY_DOUBLE)
nshifts = ish_rshifts (sf, Memd[xs], Memd[ys], imtlen (list1))
if (nshifts != imtlen (list1))
call error (2,
"The number of input images and shifts are not the same.")
} else {
sf = NULL
txshift = clgetd ("xshift")
tyshift = clgetd ("yshift")
}
# Do each set of input and output images.
nshifts = 0
while ((imtgetim (list1, Memc[image1], SZ_FNAME) != EOF) &&
(imtgetim (list2, Memc[image2], SZ_FNAME) != EOF)) {
call xt_mkimtemp (Memc[image1], Memc[image2], Memc[imtemp],
SZ_FNAME)
im1 = immap (Memc[image1], READ_ONLY, 0)
im2 = immap (Memc[image2], NEW_COPY, im1)
if (sf != NULL) {
xshift = Memd[xs+nshifts]
yshift = Memd[ys+nshifts]
} else {
xshift = txshift
yshift = tyshift
}
ixshift = int (xshift)
iyshift = int (yshift)
iferr {
# Perform the shift.
if (interp_type == II_BINEAREST) {
call ish_ishiftxy (im1, im2, nint(xshift), nint(yshift),
boundary_type, constant)
} else if (fp_equald (xshift, double(ixshift)) &&
fp_equald (yshift, double(iyshift))) {
call ish_ishiftxy (im1, im2, ixshift, iyshift,
boundary_type, constant)
} else {
call ish_gshiftxy (im1, im2, xshift, yshift,
Memc[interpstr], boundary_type, constant)
}
# Update the image WCS to reflect the shift.
if (!envgetb ("nomwcs")) {
mw = mw_openim (im1)
shifts[1] = xshift
shifts[2] = yshift
call mw_shift (mw, shifts, 03B)
call mw_saveim (mw, im2)
call mw_close (mw)
}
} then {
call eprintf ("Error shifting image: %s\n")
call pargstr (Memc[image1])
call erract (EA_WARN)
call imunmap (im2)
call imunmap (im1)
call imdelete (Memc[image2])
} else {
# Finish up.
call imunmap (im2)
call imunmap (im1)
call xt_delimtemp (Memc[image2], Memc[imtemp])
}
nshifts = nshifts + 1
}
if (sf != NULL)
call close (sf)
call imtclose (list1)
call imtclose (list2)
call sfree (sp)
end
# ISH_ISHIFTXY -- Shift a 2-D image by integral pixels in x and y.
procedure ish_ishiftxy (im1, im2, ixshift, iyshift, boundary_type,
constant)
pointer im1 #I pointer to the input image
pointer im2 #I pointer to the output image
int ixshift #I shift in x and y
int iyshift #I
int boundary_type #I type of boundary extension
real constant #I constant for boundary extension
pointer buf1, buf2
long v[IM_MAXDIM]
int ncols, nlines, nbpix
int i, x1col, x2col, yline
int impnls(), impnli(), impnll(), impnlr(), impnld(), impnlx()
pointer imgs2s(), imgs2i(), imgs2l(), imgs2r(), imgs2d(), imgs2x()
errchk impnls, impnli, impnll, impnlr, impnld, impnlx
errchk imgs2s, imgs2i, imgs2l, imgs2r, imgs2d, imgs2x
string wrerr "ISHIFTXY: Error writing in image."
begin
ncols = IM_LEN(im1,1)
nlines = IM_LEN(im1,2)
# Cannot shift off image.
if (ixshift < -ncols || ixshift > ncols)
call error (3, "ISHIFTXY: X shift out of bounds.")
if (iyshift < -nlines || iyshift > nlines)
call error (4, "ISHIFTXY: Y shift out of bounds.")
# Calculate the shift.
switch (boundary_type) {
case BT_CONSTANT,BT_REFLECT,BT_NEAREST:
ixshift = min (ncols, max (-ncols, ixshift))
iyshift = min (nlines, max (-nlines, iyshift))
case BT_WRAP:
ixshift = mod (ixshift, ncols)
iyshift = mod (iyshift, nlines)
}
# Set the boundary extension values.
nbpix = max (abs (ixshift), abs (iyshift))
call imseti (im1, IM_NBNDRYPIX, nbpix)
call imseti (im1, IM_TYBNDRY, boundary_type)
if (boundary_type == BT_CONSTANT)
call imsetr (im1, IM_BNDRYPIXVAL, constant)
# Get column boundaries in the input image.
x1col = max (-ncols + 1, - ixshift + 1)
x2col = min (2 * ncols, ncols - ixshift)
call amovkl (long (1), v, IM_MAXDIM)
# Shift the image using the appropriate data type operators.
switch (IM_PIXTYPE(im1)) {
case TY_SHORT:
do i = 1, nlines {
if (impnls (im2, buf2, v) == EOF)
call error (5, wrerr)
yline = i - iyshift
buf1 = imgs2s (im1, x1col, x2col, yline, yline)
if (buf1 == EOF)
call error (5, wrerr)
call amovs (Mems[buf1], Mems[buf2], ncols)
}
case TY_INT:
do i = 1, nlines {
if (impnli (im2, buf2, v) == EOF)
call error (5, wrerr)
yline = i - iyshift
buf1 = imgs2i (im1, x1col, x2col, yline, yline)
if (buf1 == EOF)
call error (5, wrerr)
call amovi (Memi[buf1], Memi[buf2], ncols)
}
case TY_USHORT, TY_LONG:
do i = 1, nlines {
if (impnll (im2, buf2, v) == EOF)
call error (5, wrerr)
yline = i - iyshift
buf1 = imgs2l (im1, x1col, x2col, yline, yline)
if (buf1 == EOF)
call error (5, wrerr)
call amovl (Meml[buf1], Meml[buf2], ncols)
}
case TY_REAL:
do i = 1, nlines {
if (impnlr (im2, buf2, v) == EOF)
call error (5, wrerr)
yline = i - iyshift
buf1 = imgs2r (im1, x1col, x2col, yline, yline)
if (buf1 == EOF)
call error (5, wrerr)
call amovr (Memr[buf1], Memr[buf2], ncols)
}
case TY_DOUBLE:
do i = 1, nlines {
if (impnld (im2, buf2, v) == EOF)
call error (0, wrerr)
yline = i - iyshift
buf1 = imgs2d (im1, x1col, x2col, yline, yline)
if (buf1 == EOF)
call error (0, wrerr)
call amovd (Memd[buf1], Memd[buf2], ncols)
}
case TY_COMPLEX:
do i = 1, nlines {
if (impnlx (im2, buf2, v) == EOF)
call error (0, wrerr)
yline = i - iyshift
buf1 = imgs2x (im1, x1col, x2col, yline, yline)
if (buf1 == EOF)
call error (0, wrerr)
call amovx (Memx[buf1], Memx[buf2], ncols)
}
default:
call error (6, "ISHIFTXY: Unknown IRAF type.")
}
end
# ISH_GSHIFTXY -- Shift an image by fractional pixels in x and y.
# Unfortunately, this code currently performs the shift only on single
# precision real, so precision is lost if the data is of type double,
# and the imaginary component is lost if the data is of type complex.
procedure ish_gshiftxy (im1, im2, xshift, yshift, interpstr, boundary_type,
constant)
pointer im1 #I pointer to input image
pointer im2 #I pointer to output image
double xshift #I shift in x direction
double yshift #I shift in y direction
char interpstr[ARB] #I type of interpolant
int boundary_type #I type of boundary extension
real constant #I value of constant for boundary extension
int lout1, lout2, nyout, nxymargin, interp_type, nsinc, nincr
int cin1, cin2, nxin, lin1, lin2, nyin, i
int ncols, nlines, nbpix, fstline, lstline
double xshft, yshft, deltax, deltay, dx, dy, cx, ly
pointer sp, x, y, msi, sinbuf, soutbuf
pointer imps2r()
int msigeti()
bool fp_equald()
errchk msisinit(), msifree(), msifit(), msigrid()
errchk imgs2r(), imps2r()
begin
ncols = IM_LEN(im1,1)
nlines = IM_LEN(im1,2)
# Check for out of bounds shift.
if (xshift < -ncols || xshift > ncols)
call error (7, "GSHIFTXY: X shift out of bounds.")
if (yshift < -nlines || yshift > nlines)
call error (8, "GSHIFTXY: Y shift out of bounds.")
# Get the real shift.
if (boundary_type == BT_WRAP) {
xshft = mod (xshift, real (ncols))
yshft = mod (yshift, real (nlines))
} else {
xshft = xshift
yshft = yshift
}
# Allocate temporary space.
call smark (sp)
call salloc (x, 2 * ncols, TY_REAL)
call salloc (y, 2 * nlines, TY_REAL)
sinbuf = NULL
# Define the x and y shifts for the interpolation.
dx = abs (xshft - int (xshft))
if (fp_equald (dx, 0D0))
deltax = 0.0
else if (xshft > 0.)
deltax = 1. - dx
else
deltax = dx
dy = abs (yshft - int (yshft))
if (fp_equald (dy, 0D0))
deltay = 0.0
else if (yshft > 0.)
deltay = 1. - dy
else
deltay = dy
# Initialize the 2-D interpolation routines.
call msitype (interpstr, interp_type, nsinc, nincr, cx)
if (interp_type == II_BILSINC || interp_type == II_BISINC )
call msisinit (msi, II_BILSINC, nsinc, 1, 1,
deltax - nint (deltax), deltay - nint (deltay), 0.0)
else
call msisinit (msi, interp_type, nsinc, nincr, nincr, cx, cx, 0.0)
# Set boundary extension parameters.
if (interp_type == II_BISPLINE3)
nxymargin = NMARGIN_SPLINE3
else if (interp_type == II_BISINC || interp_type == II_BILSINC)
nxymargin = msigeti (msi, II_MSINSINC)
else
nxymargin = NMARGIN
nbpix = max (int (abs(xshft)+1.0), int (abs(yshft)+1.0)) + nxymargin
call imseti (im1, IM_NBNDRYPIX, nbpix)
call imseti (im1, IM_TYBNDRY, boundary_type)
if (boundary_type == BT_CONSTANT)
call imsetr (im1, IM_BNDRYPIXVAL, constant)
# Define the x interpolation coordinates
deltax = deltax + nxymargin
if (interp_type == II_BIDRIZZLE) {
do i = 1, ncols {
Memr[x+2*i-2] = i + deltax - 0.5
Memr[x+2*i-1] = i + deltax + 0.5
}
} else {
do i = 1, ncols
Memr[x+i-1] = i + deltax
}
# Define the y interpolation coordinates.
deltay = deltay + nxymargin
if (interp_type == II_BIDRIZZLE) {
do i = 1, NYOUT {
Memr[y+2*i-2] = i + deltay - 0.5
Memr[y+2*i-1] = i + deltay + 0.5
}
} else {
do i = 1, NYOUT
Memr[y+i-1] = i + deltay
}
# Define column ranges in the input image.
cx = 1. - nxymargin - xshft
if ((cx <= 0.) && (! fp_equald (dx, 0D0)))
cin1 = int (cx) - 1
else
cin1 = int (cx)
cin2 = ncols - xshft + nxymargin + 1
nxin = cin2 - cin1 + 1
# Loop over output sections.
for (lout1 = 1; lout1 <= nlines; lout1 = lout1 + NYOUT) {
# Define range of output lines.
lout2 = min (lout1 + NYOUT - 1, nlines)
nyout = lout2 - lout1 + 1
# Define correspoding range of input lines.
ly = lout1 - nxymargin - yshft
if ((ly <= 0.0) && (! fp_equald (dy, 0D0)))
lin1 = int (ly) - 1
else
lin1 = int (ly)
lin2 = lout2 - yshft + nxymargin + 1
nyin = lin2 - lin1 + 1
# Get appropriate input section and calculate the coefficients.
if ((sinbuf == NULL) || (lin1 < fstline) || (lin2 > lstline)) {
fstline = lin1
lstline = lin2
call ish_buf (im1, cin1, cin2, lin1, lin2, sinbuf)
call msifit (msi, Memr[sinbuf], nxin, nyin, nxin)
}
# Output the section.
soutbuf = imps2r (im2, 1, ncols, lout1, lout2)
if (soutbuf == EOF)
call error (9, "GSHIFTXY: Error writing output image.")
# Evaluate the interpolant.
call msigrid (msi, Memr[x], Memr[y], Memr[soutbuf], ncols, nyout,
ncols)
}
if (sinbuf != NULL)
call mfree (sinbuf, TY_REAL)
call msifree (msi)
call sfree (sp)
end
# ISH_BUF -- Provide a buffer of image lines with minimum reads.
procedure ish_buf (im, col1, col2, line1, line2, buf)
pointer im #I pointer to input image
int col1, col2 #I column range of input buffer
int line1, line2 #I line range of input buffer
pointer buf #U buffer
pointer buf1, buf2
int i, ncols, nlines, nclast, llast1, llast2, nllast
errchk malloc, realloc
pointer imgs2r()
begin
ncols = col2 - col1 + 1
nlines = line2 - line1 + 1
# Make sure the buffer is large enough.
if (buf == NULL) {
call malloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
}
# The buffers must be contiguous.
if (line1 < llast1) {
do i = line2, line1, -1 {
if (i > llast1)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (line2 > llast2) {
do i = line1, line2 {
if (i < llast2)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
llast1 = line1
llast2 = line2
nclast = ncols
nllast = nlines
end
# ISH_RSHIFTS -- Read shifts from a file.
int procedure ish_rshifts (fd, x, y, max_nshifts)
int fd #I shifts file
double x[ARB] #O x array
double y[ARB] #O y array
int max_nshifts #I the maximum number of shifts
int nshifts
int fscan(), nscan()
begin
nshifts = 0
while (fscan (fd) != EOF && nshifts < max_nshifts) {
call gargd (x[nshifts+1])
call gargd (y[nshifts+1])
if (nscan () != 2)
next
nshifts = nshifts + 1
}
return (nshifts)
end
|