1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
include <imhdr.h>
include <math.h>
include "xregister.h"
# RG_GXTRANSFORM -- Open the reference points file and the read the
# coordinates of the reference points in the reference image. Return
# the reference points file name and descriptor.
int procedure rg_gxtransform (list, xc, reffile)
int list #I list of reference points files
pointer xc #I pointer to the cross-correlation structure
char reffile[ARB] #O the output reference points file name
int tdf
pointer sp, line, pxref, pyref
real x1, y1, x2, y2, x3, y3
int fntgfnb(), open(), getline(), nscan()
pointer rg_xstatp()
begin
# Get some working memory.
call smark (sp)
call salloc (line, SZ_LINE, TY_CHAR)
# Get the points to the reference point lists.
pxref = rg_xstatp (xc, XREF)
pyref = rg_xstatp (xc, YREF)
call aclrr (Memr[rg_xstatp(xc, XREF)], MAX_NREF)
call aclrr (Memr[rg_xstatp(xc, YREF)], MAX_NREF)
# Open the reference points file and read the coordinates.
while (fntgfnb (list, reffile, SZ_FNAME) != EOF) {
iferr {
# Open the reference file.
tdf = open (reffile, READ_ONLY, TEXT_FILE)
call aclrr (Memr[pxref], MAX_NREF)
call aclrr (Memr[pyref], MAX_NREF)
# Read up to three valid reference points from the list.
while (getline (tdf, Memc[line]) != EOF) {
call sscan (Memc[line])
call gargr (x1)
call gargr (y1)
call gargr (x2)
call gargr (y2)
call gargr (x3)
call gargr (y3)
if (nscan () >= 2)
break
}
# Store the reference points.
if (nscan () == 2) {
Memr[pxref] = x1
Memr[pyref] = y1
call rg_xseti (xc, NREFPTS, 1)
} else if (nscan () == 4) {
Memr[pxref] = x1
Memr[pyref] = y1
Memr[pxref+1] = x2
Memr[pyref+1] = y2
call rg_xseti (xc, NREFPTS, 2)
} else if (nscan () == 6) {
Memr[pxref] = x1
Memr[pyref] = y1
Memr[pxref+1] = x2
Memr[pyref+1] = y2
Memr[pxref+2] = x3
Memr[pyref+2] = y3
call rg_xseti (xc, NREFPTS, 2)
} else
call rg_xseti (xc, NREFPTS, 0)
} then {
call rg_xseti (xc, NREFPTS, 0)
}
}
call sfree (sp)
return (tdf)
end
# RG_ITRANSFORM -- Compute the transformation from the input image to the
# reference image interactively.
procedure rg_itransform (xc, imr, im, id)
pointer xc #I pointer to the cross-correlation stucture
pointer imr #I pointer to the reference image
pointer im #I pointer to the input image
pointer id #I pointer to the display device
int nref, nstar, wcs, key
pointer sp, cmd, x, y, pxref, pyref, ptrans
real wx, wy
int clgcur()
pointer rg_xstatp()
begin
# Allocate working space.
call smark (sp)
call salloc (cmd, SZ_LINE, TY_CHAR)
call salloc (x, MAX_NREF, TY_REAL)
call salloc (y, MAX_NREF, TY_REAL)
call aclrr (Memr[x], MAX_NREF)
call aclrr (Memr[y], MAX_NREF)
# Get the pointers.
pxref = rg_xstatp (xc, XREF)
pyref = rg_xstatp (xc, YREF)
ptrans = rg_xstatp (xc, TRANSFORM)
# Mark up to three reference stars.
nref = 0
call printf ("Mark reference star %d with the image cursor [q=quit]: ")
call pargi (nref + 1)
while ((nref < MAX_NREF) && clgcur ("icommands", wx, wy, wcs, key,
Memc[cmd], SZ_LINE) != EOF) {
if (key == 'q') {
call printf ("\n")
break
}
if (wx < 0.5 || wx > IM_LEN(imr,1) + 0.5) {
call printf ("\n")
next
}
if (wy < 0.5 || wy > IM_LEN(imr,2) + 0.5) {
call printf ("\n")
next
}
call printf ("%g %g\n")
call pargr (wx)
call pargr (wy)
Memr[pxref+nref] = wx
Memr[pyref+nref] = wy
nref = nref + 1
call rg_xseti (xc, NREFPTS, nref)
if (nref >= MAX_NREF)
break
call printf (
"Mark reference star %d with the image cursor [q=quit]: ")
call pargi (nref + 1)
}
# Mark the corresponding input image stars.
if (nref > 0) {
nstar = 0
call printf ("Mark image star %d with the image cursor [q=quit]: ")
call pargi (nstar + 1)
while ((nstar < nref) && clgcur ("icommands", wx, wy, wcs, key,
Memc[cmd], SZ_LINE) != EOF) {
if (key == 'q') {
call printf ("\n")
break
}
if (wx < 0.5 || wx > IM_LEN(im,1) + 0.5) {
call printf ("\n")
next
}
if (wy < 0.5 || wy > IM_LEN(im,2) + 0.5) {
call printf ("\n")
next
}
call printf ("%g %g\n")
call pargr (wx)
call pargr (wy)
Memr[x+nstar] = wx
Memr[y+nstar] = wy
nstar = nstar + 1
if (nstar >= MAX_NREF)
break
call printf (
"Mark image star %d with the image cursor [q=quit]: ")
call pargi (nstar + 1)
}
# Compute the transformation.
if (nstar > 0) {
switch (nstar) {
case 0:
call rg_xshift (Memr[pxref], Memr[pyref], Memr[pxref],
Memr[pyref], Memr[ptrans])
case 1:
call rg_xshift (Memr[x], Memr[y], Memr[pxref], Memr[pyref],
Memr[ptrans])
#case 2:
#call rg_xtwostar (Memr[x], Memr[y], Memr[pxref],
#Memr[pyref], Memr[ptrans])
#case 3:
#call rg_xthreestar (Memr[x], Memr[y], Memr[pxref],
#Memr[pyref], Memr[ptrans])
default:
call rg_xshift (Memr[pxref], Memr[pyref], Memr[pxref],
Memr[pyref], Memr[ptrans])
}
}
}
call sfree (sp)
end
# RG_XTRANSFORM -- Compute the transformation from the input image to
# the reference image
procedure rg_xtransform (tfd, xc)
int tfd #I the reference points file descriptor
pointer xc #I the cross-correlation file descriptor
int nref
pointer sp, line, x, y, pxref, pyref, ptrans
int getline(), rg_xstati(), nscan()
pointer rg_xstatp()
begin
# Allocate working space.
call smark (sp)
call salloc (line, SZ_LINE, TY_CHAR)
call salloc (x, MAX_NREF, TY_REAL)
call salloc (y, MAX_NREF, TY_REAL)
call aclrr (Memr[x], MAX_NREF)
call aclrr (Memr[y], MAX_NREF)
# Get the pointers to the reference image data.
nref = rg_xstati (xc, NREFPTS)
pxref = rg_xstatp (xc, XREF)
pyref = rg_xstatp (xc, YREF)
ptrans = rg_xstatp (xc, TRANSFORM)
# Read the input image reference points.
while ((nref > 0) && getline (tfd, Memc[line]) != EOF) {
call sscan (Memc[line])
call gargr (Memr[x])
call gargr (Memr[y])
call gargr (Memr[x+1])
call gargr (Memr[y+1])
call gargr (Memr[x+2])
call gargr (Memr[y+2])
if (nscan() >= 2 * nref)
break
}
# Compute the transform.
if (nscan () < 2 * nref) {
call rg_xshift (Memr[pxref], Memr[pyref], Memr[pxref], Memr[pyref],
Memr[ptrans])
} else {
switch (nref) {
case 0:
call rg_xshift (Memr[pxref], Memr[pyref], Memr[pxref],
Memr[pyref], Memr[ptrans])
case 1:
call rg_xshift (Memr[x], Memr[y], Memr[pxref], Memr[pyref],
Memr[ptrans])
case 2:
call rg_xtwostar (Memr[x], Memr[y], Memr[pxref], Memr[pyref],
Memr[ptrans])
case 3:
call rg_xthreestar (Memr[x], Memr[y], Memr[pxref], Memr[pyref],
Memr[ptrans])
}
}
call sfree (sp)
end
# RG_ETRANSFORM -- Evaulate the current transform at a single point.
procedure rg_etransform (xc, xin, yin, xout, yout)
pointer xc #I pointer to the cross-correlation structure
real xin, yin #I the input x and y values
real xout, yout #O the output x and y values
pointer ptrans
pointer rg_xstatp
begin
ptrans = rg_xstatp (xc, TRANSFORM)
xout = Memr[ptrans] * xin + Memr[ptrans+1] * yin + Memr[ptrans+2]
yout = Memr[ptrans+3] * xin + Memr[ptrans+4] * yin + Memr[ptrans+5]
end
# RG_XSHIFT -- Compute the transformation coefficients required to define a
# simple shift using a single data point.
procedure rg_xshift (xref, yref, xlist, ylist, coeff)
real xref[ARB] #I x reference coordinates
real yref[ARB] #I y reference coordinates
real xlist[ARB] #I x input coordinates
real ylist[ARB] #I y input coordinates
real coeff[ARB] #O output coefficient array
begin
# Compute the x transformation.
coeff[1] = 1.0
coeff[2] = 0.0
coeff[3] = xref[1] - xlist[1]
# Compute the y transformation.
coeff[4] = 0.0
coeff[5] = 1.0
coeff[6] = yref[1] - ylist[1]
end
# RG_XTWOSTAR -- Compute the transformation coefficients required to
# define a simple shift, magnification which is the same in x and y,
# and rotation using two data points.
procedure rg_xtwostar (xref, yref, xlist, ylist, coeff)
real xref[ARB] #I x reference coordinates
real yref[ARB] #I y reference coordinates
real xlist[ARB] #I x input coordinates
real ylist[ARB] #I y input coordinates
real coeff[ARB] #O coefficient array
real rot, mag, dxlis, dylis, dxref, dyref, cosrot, sinrot
real rg_xposangle()
begin
# Compute the deltas.
dxlis = xlist[2] - xlist[1]
dylis = ylist[2] - ylist[1]
dxref = xref[2] - xref[1]
dyref = yref[2] - yref[1]
# Compute the required rotation angle.
rot = rg_xposangle (dxref, dyref) - rg_xposangle (dxlis, dylis)
cosrot = cos (rot)
sinrot = sin (rot)
# Compute the required magnification factor.
mag = dxlis ** 2 + dylis ** 2
if (mag <= 0.0)
mag = 0.0
else
mag = sqrt ((dxref ** 2 + dyref ** 2) / mag)
# Compute the transformation coefficicents.
coeff[1] = mag * cosrot
coeff[2] = - mag * sinrot
coeff[3] = xref[1] - mag * cosrot * xlist[1] + mag * sinrot * ylist[1]
coeff[4] = mag * sinrot
coeff[5] = mag * cosrot
coeff[6] = yref[1] - mag * sinrot * xlist[1] - mag * cosrot * ylist[1]
end
# RG_THREESTAR -- Compute the transformation coefficients required to define
# x and y shifts, x and ymagnifications, a rotation and skew, and a possible
# axis flip using three tie points.
procedure rg_xthreestar (xref, yref, xlist, ylist, coeff)
real xref[ARB] #I x reference coordinates
real yref[ARB] #I y reference coordinates
real xlist[ARB] #I x input coordinates
real ylist[ARB] #I y input coordinates
real coeff[ARB] #O coefficient array
real dx23, dx13, dx12, dy23, dy13, dy12, det
bool fp_equalr()
begin
# Compute the deltas.
dx23 = xlist[2] - xlist[3]
dx13 = xlist[1] - xlist[3]
dx12 = xlist[1] - xlist[2]
dy23 = ylist[2] - ylist[3]
dy13 = ylist[1] - ylist[3]
dy12 = ylist[1] - ylist[2]
# Compute the determinant.
det = xlist[1] * dy23 - xlist[2] * dy13 + xlist[3] * dy12
if (fp_equalr (det, 0.0)) {
call rg_xtwostar (xref, yref, xlist, ylist, coeff)
return
}
# Compute the x transformation.
coeff[1] = (xref[1] * dy23 - xref[2] * dy13 + xref[3] * dy12) / det
coeff[2] = (-xref[1] * dx23 + xref[2] * dx13 - xref[3] * dx12) / det
coeff[3] = (xref[1] * (xlist[2] * ylist[3] - xlist[3] * ylist[2]) +
xref[2] * (ylist[1] * xlist[3] - xlist[1] * ylist[3]) +
xref[3] * (xlist[1] * ylist[2] - ylist[1] * xlist[2])) / det
# Compute the y transformation.
coeff[4] = (yref[1] * dy23 - yref[2] * dy13 + yref[3] * dy12) / det
coeff[5] = (-yref[1] * dx23 + yref[2] * dx13 - yref[3] * dx12) / det
coeff[6] = (yref[1] * (xlist[2] * ylist[3] - xlist[3] * ylist[2]) +
yref[2] * (ylist[1] * xlist[3] - xlist[1] * ylist[3]) +
yref[3] * (xlist[1] * ylist[2] - ylist[1] * xlist[2])) / det
end
# RG_XPOSANGLE -- Compute the position angle of a 2D vector. The angle is
# measured counter-clockwise from the positive x axis.
real procedure rg_xposangle (x, y)
real x #I x vector component
real y #I y vector component
real theta
bool fp_equalr()
begin
if (fp_equalr (y, 0.0)) {
if (x > 0.0)
theta = 0.0
else if (x < 0.0)
theta = PI
else
theta = 0.0
} else if (fp_equalr (x, 0.0)) {
if (y > 0.0)
theta = PI / 2.0
else if (y < 0.0)
theta = 3.0 * PI / 2.0
else
theta = 0.0
} else if (x > 0.0 && y > 0.0) { # 1st quadrant
theta = atan (y / x)
} else if (x > 0.0 && y < 0.0) { # 4th quadrant
theta = 2.0 * PI + atan (y / x)
} else if (x < 0.0 && y > 0.0) { # 2nd quadrant
theta = PI + atan (y / x)
} else if (x < 0.0 && y < 0.0) { # 3rd quadrant
theta = PI + atan (y / x)
}
return (theta)
end
|