aboutsummaryrefslogtreecommitdiff
path: root/pkg/images/tv/iis/ids/idsgcell.x
blob: 6ba8245f5dee457fecf8919219a63a9043fadf78 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include	<mach.h>
include <gki.h>
include <gset.h>
include "../lib/ids.h"

# IDS_GETCELLARRAY -- Fetch a cell array, i.e., two dimensional array of pixels
# (greylevels or colors).

procedure ids_getcellarray (nc, nr, ax1,ay1, ax2,ay2)

int	nc, nr			# number of pixels in X and Y
int	ax1, ay1		# lower left corner of input window
int	ax2, ay2		# upper right corner of input window

int	x1, y1, x2, y2
int	nx,ny			# number of device pixels in x and y
real	px1, px2, py1, py2

real	skip_x, skip_y, sx, sy
real	blockx, blocky, bcy
int	i, j, startrow, element
real	xres, yres
pointer	sp, cell
pointer	mp			# final data pointer to "array" m
bool	ca, use_orig, new_row

include "../lib/ids.com"

begin

	# determine if can do real cell array.

	ca = (IDS_CELLARRAY(i_kt) != 0)
	if ( !ca )
	     return

	skip_x = 1.0
	skip_y = 1.0
	blockx = 1.0
	blocky = 1.0

	xres = real(i_xres)
	yres = real(i_yres)

	# adjust pixels for edges
	x1 = ax1
	x2 = ax2
	y1 = ay1
	y2 = ay2
	call ids_cround(x1,x2,xres)
	call ids_cround(y1,y2,yres)

	# find out how many real pixels we have to fetch

	px1 = real(x1) * xres /(GKI_MAXNDC+1)
	py1 = real(y1) * yres /(GKI_MAXNDC+1)
	px2 = real(x2) * xres /(GKI_MAXNDC+1)
	py2 = real(y2) * yres /(GKI_MAXNDC+1)

	nx = int( px2 ) - int( px1 ) + 1
	ny = int( py2 ) - int( py1 ) + 1

	# if too many data points in input, set skip.  If skip is close
	# enough to one, set it to one.
	# set block replication factors - will be > 1.0 if too few input points.
	# cannot set to 1.0 if "close" enough, since, if > 1.0, we don't have
	# enough points and so *some* have to be replicated.

	if ( nx > nc ) {
	    skip_x = real(nx)/nc
	    if ( (skip_x - 1.0)*(nc-1) < 1.0 )
		skip_x = 1.0
	} else
	    blockx = real(nc)/nx

	if ( ny > nr ) {
	    skip_y = real(ny)/nr
	    if ( (skip_y - 1.0)*(nr-1) < 1.0 )
		skip_y = 1.0
	} else
	    blocky = real(nr)/ny

	# initialize counters

	call smark(sp)

	# allocate storage for output

	call salloc (mp, nc*nr, TY_SHORT)
	sy = 0
	bcy = blocky
	startrow = 1

	# see if we can use original data ... no massaging
	# also set the initial value of the new_row flag, which tells
	# if we have to rebuild the row data
	# note that if blockx > 1.0, skip_x must be 1.0, and vv

	if ( (skip_x == 1.0) && (blockx == 1.0) ) {
	    use_orig = true
	} else {
	    use_orig = false
	    # allocate storage for a row of pixels.
	    call salloc ( cell, nx, TY_SHORT)
	}
	new_row = true

	# do it

	for ( i = 1; i <= nr ; i = i + 1) {

	# fetch the row data.  The reading routine will figure out
	# how to read from the various individual frames and bitplanes.

	    if ( new_row) {
		if (!i_snap)
		    call zseek (i_out, int(px1), int(py1)+int(sy+0.5))
	        if ( use_orig )
		    # just copy it in
		    if (i_snap)
		        call do_snap (Mems[mp+startrow-1], nx, int(px1),
	        	    int(py1)+int(sy+0.5))
		    else
			call read (i_out, Mems[mp+startrow-1], nx)
	        else
		    # into Mems for rework
		    if (i_snap)
		        call do_snap (Mems[cell], nx, int(px1),
	        	    int(py1)+int(sy+0.5))
		    else
			call read (i_out, Mems[cell], nx)
	    }

	# rework the row data

	    if ( !use_orig && new_row ) {
		if ( skip_x == 1.0)
		    call ids_blockit(Mems[cell], Mems[mp+startrow-1], nc,
		    		blockx)
		else {
	            sx = 0
	            for ( j = 1; j <= nc; j = j + 1) {
		        element = int(sx+0.5)
		        Mems[mp+startrow-1+j-1] = Mems[cell + element]
		        sx = sx + skip_x
	            }
		}
	    }
	# if don't need new row of input data, duplicate the
	# previous one by copying within the "m" array
	    if ( ! new_row )
		call amovs (Mems[mp+startrow-1-nc], Mems[mp+startrow-1], nc)

	#advance a row

	    startrow = startrow + nc
	    if ( bcy <= real(i) ) {
		sy = sy + skip_y
	        bcy = bcy + blocky
		new_row = true
	    } else {
		new_row = false
	    }
	}

	call gki_retcellarray (i_in, Mems[mp], nr * nc)
	call sfree(sp)
end